1
|
Landis BC, Wong WJ, Pappas AC. Postmortem Analysis of Optic Nerve Head Vascularization in an Individual With Glaucoma. Cureus 2024; 16:e59085. [PMID: 38803734 PMCID: PMC11128330 DOI: 10.7759/cureus.59085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Reduced ocular perfusion likely contributes to glaucomatous damage at the optic nerve head (ONH). In recent decades, investigators have focused heavily on ocular perfusion pressure and other factors affecting blood flow to the eye. Comparatively, far less attention has been focused on the blood vessels themselves. Here, we asked whether glaucomatous individuals exhibit anatomical deficiencies (i.e., fewer blood vessels) in their ONH blood supply. To answer this question, we performed a systematic literature review to (1) determine how many studies have reported measuring blood vessels in the ONH and (2) whether these studies reported differences in blood vessel quantity. Additionally, we report a method for quantifying blood vessels in ex vivo human ONH preparations, including an ONH from an individual with glaucoma. Our results show that only two studies in the past 50 years have published data concerning blood vessel density in glaucomatous ONHs. Interestingly, both studies reported decreased blood vessel density in glaucoma. Consistent with this finding, we also report reduced blood vessel numbers in the superolateral quadrant of a glaucomatous individual's ONH. Vascularity in the three remaining quadrants was similar to control. Together, our findings raise the interesting possibility that individuals with a relatively sparse ONH blood supply are more likely to develop glaucoma. Future studies with larger sample sizes and more thorough quantification are necessary to determine the link more accurately between glaucoma and the blood supply to the ONH.
Collapse
Affiliation(s)
- Brianna C Landis
- Anatomy, Rocky Vista University College of Osteopathic Medicine, Ivins, USA
| | - Westin J Wong
- Anatomy, Rocky Vista University College of Osteopathic Medicine, Ivins, USA
| | - Anthony C Pappas
- Gross Anatomy, Rocky Vista University College of Osteopathic Medicine, Ivins, USA
| |
Collapse
|
2
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Chou TH, Hao Z, Alba D, Lazo A, Gallo Afflitto G, Eastwood JD, Porciatti V, Guy J, Yu H. Mitochondrially Targeted Gene Therapy Rescues Visual Loss in a Mouse Model of Leber's Hereditary Optic Neuropathy. Int J Mol Sci 2023; 24:17068. [PMID: 38069388 PMCID: PMC10707051 DOI: 10.3390/ijms242317068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a common mitochondrial genetic disease, causing irreversible blindness in young individuals. Current treatments are inadequate, and there is no definitive cure. This study evaluates the effectiveness of delivering wildtype human NADH ubiquinone oxidoreductase subunit 4 (hND4) gene using mito-targeted AAV(MTSAAV) to rescue LHOH mice. We observed a declining pattern in electroretinograms amplitudes as mice aged across all groups (p < 0.001), with significant differences among groups (p = 0.023; Control vs. LHON, p = 0.008; Control vs. Rescue, p = 0.228). Inner retinal thickness and intraocular pressure did not change significantly with age or groups. Compared to LHON mice, those rescued with wildtype hND4 exhibited improved retinal visual acuity (0.29 ± 0.1 cy/deg vs. 0.15 ± 0.1 cy/deg) and increased functional hyperemia response (effect of flicker, p < 0.001, effect of Group, p = 0.004; Interaction Flicker × Group, p < 0.001). Postmortem analysis shows a marked reduction in retinal ganglion cell density in the LHON group compared to the other groups (Effect of Group, p < 0.001, Control vs. LHON, p < 0.001, Control vs. Rescue, p = 0.106). These results suggest that MTSAAV-delivered wildtype hND4 gene rescues, at least in part, visual impairment in an LHON mouse model and has the therapeutic potential to treat this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (T.-H.C.); (Z.H.); (D.A.); (A.L.); (G.G.A.); (J.D.E.); (J.G.)
| | | | - Hong Yu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (T.-H.C.); (Z.H.); (D.A.); (A.L.); (G.G.A.); (J.D.E.); (J.G.)
| |
Collapse
|
4
|
Gierke K, Lux UT, Regus-Leidig H, Brandstätter JH. The first synapse in vision in the aging mouse retina. Front Cell Neurosci 2023; 17:1291054. [PMID: 38026697 PMCID: PMC10654782 DOI: 10.3389/fncel.2023.1291054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Vision is our primary sense, and maintaining it throughout our lifespan is crucial for our well-being. However, the retina, which initiates vision, suffers from an age-related, irreversible functional decline. What causes this functional decline, and how it might be treated, is still unclear. Synapses are the functional hub for signal transmission between neurons, and studies have shown that aging is widely associated with synaptic dysfunction. In this study, we examined the first synapse of the visual system - the rod and cone photoreceptor ribbon synapse - in the mouse retina using light and electron microscopy at 2-3 months, ~1 year, and >2 years of age. We asked, whether age-related changes in key synaptic components might be a driver of synaptic dysfunction and ultimately age-related functional decline during normal aging. We found sprouting of horizontal and bipolar cells, formation of ectopic photoreceptor ribbon synapses, and a decrease in the number of rod photoreceptors and photoreceptor ribbon synapses in the aged retina. However, the majority of the photoreceptors did not show obvious changes in the structural components and protein composition of their ribbon synapses. Noteworthy is the increase in mitochondrial size in rod photoreceptor terminals in the aged retina.
Collapse
Affiliation(s)
| | | | | | - Johann Helmut Brandstätter
- Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Mazumder AG, Julé AM, Sun D. Astrocytes of the optic nerve exhibit a region-specific and temporally distinct response to elevated intraocular pressure. Mol Neurodegener 2023; 18:68. [PMID: 37759301 PMCID: PMC10523752 DOI: 10.1186/s13024-023-00658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The optic nerve is an important tissue in glaucoma and the unmyelinated nerve head region remains an important site of many early neurodegenerative changes. In both humans and mice, astrocytes constitute the major glial cell type in the region, and in glaucoma they become reactive, influencing the optic nerve head (ONH) microenvironment and disease outcome. Despite recognizing their importance in the progression of the disease, the reactive response of optic nerve head astrocytes remains poorly understood. METHODS To determine the global reactive response of ONH astrocytes in glaucoma we studied their transcriptional response to an elevation in IOP induced by the microbead occlusion model. To specifically isolate astrocyte mRNA in vivo from complex tissues, we used the ribotag method to genetically tag ribosomes in astrocytes, restricting analysis to astrocytes and enabling purification of astrocyte-associated mRNA throughout the entire cell, including the fine processes, for bulk RNA-sequencing. We also assessed the response of astrocytes in the more distal myelinated optic nerve proper (ONP) as glaucomatous changes manifest differently between the two regions. RESULTS Astrocytes of the optic nerve exhibited a region-specific and temporally distinct response. Surprisingly, ONH astrocytes showed very few early transcriptional changes and ONP astrocytes demonstrated substantially larger changes over the course of the experimental period. Energy metabolism, particularly oxidative phosphorylation and mitochondrial protein translation emerged as highly upregulated processes in both ONH and ONP astrocytes, with the former showing additional upregulation in antioxidative capacity and proteolysis. Interestingly, optic nerve astrocytes demonstrated a limited neuroinflammatory response, even when challenged with a more severe elevation in IOP. Lastly, there were a greater number of downregulated processes in both astrocyte populations compared to upregulated processes. CONCLUSION Our findings demonstrate an essential role for energy metabolism in the response of optic nerve astrocytes to elevated IOP, and contrary to expectations, neuroinflammation had a limited overall role. The transcriptional response profile is supportive of the notion that optic nerve astrocytes have a beneficial role in glaucoma. These previously uncharacterized transcriptional response of optic nerve astrocytes to injury reveal their functional diversity and a greater heterogeneity than previously appreciated.
Collapse
Affiliation(s)
- Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Zhu Y, Wang R, Pappas AC, Seifert P, Savol A, Sadreyev RI, Sun D, Jakobs TC. Astrocytes in the Optic Nerve Are Heterogeneous in Their Reactivity to Glaucomatous Injury. Cells 2023; 12:2131. [PMID: 37681863 PMCID: PMC10486930 DOI: 10.3390/cells12172131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The optic nerve head is thought to be the site of initial injury to retinal ganglion cell injury in glaucoma. In the initial segment of the optic nerve directly behind the globe, the ganglion cell axons are unmyelinated and come into direct contact to astrocytes, suggesting that astrocytes may play a role in the pathology of glaucoma. As in other parts of the CNS, optic nerve head astrocytes respond to injury by characteristic changes in cell morphology and gene expression profile. Using RNA-sequencing of glaucomatous optic nerve heads, single-cell PCR, and an in-vivo assay, we demonstrate that an up-regulation of astrocytic phagocytosis is an early event after the onset of increased intraocular pressure. We also show that astrocytes in the glial lamina of the optic nerve are apparently functionally heterogeneous. At any time, even in naïve nerves, some of the cells show signs of reactivity-process hypertrophy, high phagocytic activity, and expression of genetic markers of reactivity whereas neighboring cells apparently are inactive. A period of increased intraocular pressure moves more astrocytes towards the reactive phenotype; however, some cells remain unreactive even in glaucomatous nerves.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Department of Ophthalmology, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304, USA
| | - Rui Wang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi’an 710002, China
| | - Anthony C. Pappas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Philip Seifert
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Andrej Savol
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Tatjana C. Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| |
Collapse
|
7
|
Cullen PF, Sun D. Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217137. [PMID: 37829657 PMCID: PMC10569075 DOI: 10.3389/fopht.2023.1217137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.
Collapse
Affiliation(s)
- Paul F. Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1057896. [PMID: 36866233 PMCID: PMC9976697 DOI: 10.3389/fopht.2022.1057896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 04/16/2023]
Abstract
Artificial intelligence (AI) has been approved for biomedical research in diverse areas from bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data available and the introduction of federated learning. Conversely, AI for basic science remains limited despite its useful power in providing mechanistic insight. In this perspective, we discuss recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific discoveries. Specifically, we focus on the research paradigm of reverse translation, in which clinical data are first used for patient-centered hypothesis generation followed by transitioning into basic science studies for hypothesis validation. We elaborate on several distinctive areas of research opportunities for reverse translation of AI in glaucoma including disease risk and progression prediction, pathology characterization, and sub-phenotype identification. We conclude with current challenges and future opportunities for AI research in basic science for glaucoma such as inter-species diversity, AI model generalizability and explainability, as well as AI applications using advanced ocular imaging and genomic data.
Collapse
Affiliation(s)
- Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rebecca M. Sappington
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin C. Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
10
|
Li S, Jakobs TC. Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma. Cell Rep 2022; 41:111880. [PMID: 36577373 PMCID: PMC9847489 DOI: 10.1016/j.celrep.2022.111880] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Aging causes an irreversible, cumulative decline in neuronal function. Using the visual system as a model, we show that astrocytes play a critical role in maintaining retinal ganglion cell health and that deletion of SPP1 (secreted phosphoprotein 1, or osteopontin) from astrocytes leads to increased vulnerability of ganglion cells to age, elevated intraocular pressure, and traumatic optic nerve damage. Overexpression of SPP1 slows the age-related decline in ganglion cell numbers and is highly protective of visual function in a mouse model of glaucoma. SPP1 acts by promoting phagocytosis and secretion of neurotrophic factors while inhibiting production of neurotoxic and pro-inflammatory factors. SPP1 up-regulates transcription of genes related to oxidative phosphorylation, functionally enhances mitochondrial respiration, and promotes the integrity of mitochondrial microstructure. SPP1 increases intracellular ATP concentration via up-regulation of VDAC1.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Tan Z, Guo Y, Shrestha M, Sun D, Gregory-Ksander M, Jakobs TC. Microglia depletion exacerbates retinal ganglion cell loss in a mouse model of glaucoma. Exp Eye Res 2022; 225:109273. [PMID: 36206859 PMCID: PMC10970711 DOI: 10.1016/j.exer.2022.109273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
To test whether depletion of microglia in the optic nerve head has a beneficial effect on retinal ganglion cell numbers and function, we depleted microglia by oral administration of the CSF1R antagonist PLX5622. Then, ocular hypertension was induced by unilateral injection of magnetic microbeads into the anterior chamber. Visual function was assessed with pattern electroretinography and measurement of the optomotor reflex. Retinal ganglion cell bodies and axons were counted and gene expression patterns in optic nerve head astrocytes were tested on freshly dissociated astrocytes. PLX5622 efficiently depleted microglia in the retina and the optic nerve head, but about 20% of microglia persisted in the myelinated optic nerve proper even after prolonged exposure to the drug. PLX5622 did not affect ganglion cell function by itself. Elevation of the IOP for four weeks led to the expected decrease in visual acuity and pattern ERG amplitude. Microglia ablation did not affect these parameters. Ganglion cell and axon numbers were counted histologically post mortem. Mice in the microglia depletion group showed a moderate but significantly greater loss of ganglion cells than the control group. At four weeks post microbead injection, gene expression patterns in optic nerve head astrocytes are consistent with an A2 (or neuroprotective) pattern. Microglia depletion blunted the up-regulation of A2 genes in astrocytes. In conclusion, microglia depletion is unlikely to protect retinal ganglion cells in early glaucoma.
Collapse
Affiliation(s)
- Zizhu Tan
- The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China; Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard University School of Medicine, 20 Staniford Street, Boston, MA, 02114, USA
| | - Yinjie Guo
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard University School of Medicine, 20 Staniford Street, Boston, MA, 02114, USA; The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Maleeka Shrestha
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard University School of Medicine, 20 Staniford Street, Boston, MA, 02114, USA
| | - Daniel Sun
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard University School of Medicine, 20 Staniford Street, Boston, MA, 02114, USA
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard University School of Medicine, 20 Staniford Street, Boston, MA, 02114, USA
| | - Tatjana C Jakobs
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard University School of Medicine, 20 Staniford Street, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Wu HJ, Kuchtey RW, Kuchtey J. Optic neuropathy associated with TGFβ dysregulation in mice with a glaucoma-causative mutation of ADAMTS10. Matrix Biol 2022; 113:83-99. [PMID: 36216203 PMCID: PMC10001177 DOI: 10.1016/j.matbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 12/11/2022]
Abstract
Glaucoma is a neurodegenerative disease that causes irreversible blindness due to loss of retinal ganglion cells (RGCs) and their axons. We previously identified a G661R mutation of ADAMTS10 (A Disintegrin And Metalloproteinase with ThromboSpondin type 1 motif 10) as the disease-causing mutation in a beagle model of glaucoma. ADAMTS10 is a secreted matrix metalloproteinase that belongs to the ADAMTS family which is involved in extracellular matrix (ECM) turnover. Previous studies have shown that ADAMTS10 binds fibrillin microfibrils, promotes their formation, and influences their fibrillin isoform composition. Here, we established a mouse model carrying the G661R mutation of ADAMTS10 (ADAMTS10G661R/G661R) to investigate its ocular phenotypes related to glaucoma and to explore possible functions of ADAMTS10. We found that ADAMTS10 was expressed in the inner retina and along RGC axons in the optic nerve. However, ADAMTS10 was not colocalized with fibrillin microfibrils in these tissues, suggesting fibrillin-independent function for ADAMTS10. In electroretinogram experiments, we found that ADAMTS10G661R/G661R mice had reduced amplitude of retinal responses to dim light stimulus, indicating RGC dysfunction. The reduced RGC function coincided with RGC axon structural changes manifested as smaller optic nerves and fewer optic nerve axons, which may contribute to glaucoma. The reduced number of optic nerve axons found for ADAMTS10G661R/G661R mice occurred early, suggesting developmental deficits. Subsequent experiments found increased apoptosis in the retina of ADAMTS10G661R/G661R mice during postnatal development, which could result in fewer RGCs produced, accounting for fewer optic nerve axons in adulthood. Consistent with a protective effect of transforming growth factor β (TGFβ) signaling against apoptosis during retinal development as shown previously by others, we found increased apoptosis accompanied by decreased TGFβ signaling in the developing retina of ADAMTS10G661R/G661R mice, suggesting a novel role for ADAMTS10 in regulating TGFβ signaling which could involve direct interaction between ADAMTS10 and latent TGFβ.
Collapse
Affiliation(s)
- Hang-Jing Wu
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 MCN, Nashville, TN 37232-8808, USA
| | - Rachel W Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 MCN, Nashville, TN 37232-8808, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232-0022, USA
| | - John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 MCN, Nashville, TN 37232-8808, USA.
| |
Collapse
|
13
|
Yefimova MG. Myelinosome organelles in pathological retinas: ubiquitous presence and dual role in ocular proteostasis maintenance. Neural Regen Res 2022; 18:1009-1016. [PMID: 36254982 PMCID: PMC9827766 DOI: 10.4103/1673-5374.355753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The timely and efficient elimination of aberrant proteins and damaged organelles, formed in response to various genetic and environmental stressors, is a vital need for all cells of the body. Recent lines of evidence point out several non-classical strategies employed by ocular tissues to cope with aberrant constituents generated in the retina and in the retinal pigmented epithelium cells exposed to various stressors. Along with conventional strategies relying upon the intracellular degradation of aberrant constituents through ubiquitin-proteasome and/or lysosome-dependent autophagy proteolysis, two non-conventional mechanisms also contribute to proteostasis maintenance in ocular tissues. An exosome-mediated clearing and a myelinosome-driven secretion mechanism do not require intracellular degradation but provide the export of aberrant constituents and "waste proteins" outside of the cells. The current review is centered on the non-degradative myelinosome-driven secretion mechanism, which operates in the retina of transgenic Huntington's disease R6/1 model mice. Myelinosome-driven secretion is supported by rare organelles myelinosomes that are detected not only in degenerative Huntington's disease R6/1 retina but also in various pathological states of the retina and of the retinal pigmented epithelium. The intra-retinal traffic and inter-cellular exchange of myelinosomes was discussed in the context of a dual role of the myelinosome-driven secretion mechanism for proteostasis maintenance in different ocular compartments. Special focus was made on the interplay between degradative and non-degradative strategies in ocular pathophysiology, to delineate potential therapeutic approaches to counteract several vision diseases.
Collapse
Affiliation(s)
- Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg, Russia,Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers, France,Correspondence to: Marina G. Yefimova, .
| |
Collapse
|
14
|
Lai W, Huang J, Fang W, Deng S, Xie Y, Wang W, Qiao T, Xu G, Wang X, Ding F. Optic nerve head: A gatekeeper for vitreous infectious insults? Front Immunol 2022; 13:987771. [PMID: 36203577 PMCID: PMC9531234 DOI: 10.3389/fimmu.2022.987771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
The axons of retinal ganglion cells (RGCs) pass through the optic nerve head (ONH) and form the optic nerve (ON). The ONH serves as an anatomical interface between the vitreous cavity and subarachnoid space. After inducing acute neuroinflammation by intravitreal injection of lipopolysaccharides (LPS), we observed inflammatory activation in the retina, but detect no signs of inflammation in the posterior ON or infiltration of inflammatory cells in the ONH. Therefore, we hypothesized that the ONH functions as a barrier to vitreous inflammation. Using transmission electron microscopy, we identified significant increase in G-ratio in the posterior ON on day 7 post intravitreal injection (PII) of LPS compared with the phosphate buffered saline (PBS) group. Moreover, using confocal imaging of ex vivo tissue extracted from Aldh1L1-eGFP reporter mice, we observed that the ONH astrocytes altered their spatial orientation by elongating their morphology along the axonal axis of RGCs in LPS- versus PBS-treated eyes; this was quantified by the ratio of longitudinal (DL) and transverse (DT) diameter of astrocytes and the proportion of longitudinally locating astrocytes. Supportive evidences were further provided by transmission electron microscopic imaging in rat ONH. We further conducted RNA sequencing of ONH on day 1 PII and found LPS induced clear upregulation of immune and inflammatory pathways. Furthermore, gene set enrichment analysis revealed that astrocyte and microglia contributed prominently to the transcriptomic alterations in ONH. Here, we report that the vitreous infectious insults induce morphological changes of ONH astrocytes and transcriptomic alterations in the ONH. Glial responses in the ONH may defend against vitreous infectious insults and serve as a barrier to inflammation for the central nervous system.
Collapse
Affiliation(s)
- Wenwen Lai
- Department of Pharmacology, School of Basic Medical Sciences; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Fudan University, Shanghai, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Huang
- Department of Pharmacology, School of Basic Medical Sciences; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Fudan University, Shanghai, China
- Department of Ophthalmology, Eye, Ear, Nose and Throat Hospital; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wangyi Fang
- Department of Ophthalmology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Saiyue Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Qiao
- Department of Ophthalmology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Gezhi Xu
- Department of Pharmacology, School of Basic Medical Sciences; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Fudan University, Shanghai, China
- Department of Ophthalmology, Eye, Ear, Nose and Throat Hospital; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaowei Wang
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Fengfei Ding, ; Xiaowei Wang,
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Fudan University, Shanghai, China
- Department of Ophthalmology, Eye, Ear, Nose and Throat Hospital; State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Fengfei Ding, ; Xiaowei Wang,
| |
Collapse
|
15
|
Zhou DB, Castanos MV, Geyman L, Rich CA, Tantraworasin A, Ritch R, Rosen RB. Mitochondrial Dysfunction in Primary Open-angle Glaucoma Characterized by Flavoprotein Fluorescence at the Optic Nerve Head. Ophthalmol Glaucoma 2021; 5:413-420. [PMID: 34968754 DOI: 10.1016/j.ogla.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the presence of flavoprotein fluorescence (FPF) at the optic nerve head (ONH) rim as a marker of mitochondrial dysfunction in primary open-angle glaucoma (POAG) and control eyes. DESIGN Retrospective cross-sectional study, with patients recruited from the New York Eye and Ear Infirmary of Mount Sinai. SUBJECTS, PARTICIPANTS, AND/OR CONTROLS A total of 86 eyes (50 eyes of 30 POAG patents and 36 eyes of 20 controls) were enrolled. The presence of POAG was defined by circumpapillary retinal nerve fiber layer thickness below the bottom fifth percentile of the normative database, glaucomatous ONH changes, and visual field defects on 24-2 tests. METHODS, INTERVENTION, OR TESTING POAG and control eyes were imaged using the OcuMet Beacon. A 23°x23° infrared scan was obtained, and an FPF scan was performed within a capture field spanning 13 degrees in diameter. The ONH margins on the infrared image were identified by software algorithms. FPF then was measured within an elliptical annulus around the ONH rim, with the inner and outer boundaries corresponding to 0.5 to 1.1 times the ONH rim size. MAIN OUTCOMES MEASURES FPF at the OHN rim in POAG and control eyes. RESULTS Differences in FPF between POAG and control eyes were characterized through mixed-effects logistic regression, adjusted for age and interocular pressure. FPF was significantly higher in POAG versus control eyes, with a mean±SD of 46.4±27.9 versus 28.0±11.7 (P<0.001), respectively. Evaluation of anatomical quadrants revealed greater FPF in POAG versus control eyes at the temporal (P=0.001), superior (P<0.001), nasal (P=0.002), and inferior (P=0.001) quadrants. Among POAG eyes, FPF showed correlation to visual field mean deviation (P<0.001), visual field pattern standard deviation (P=0.003), and circumpapillary retinal nerve fiber thickness (P=0.001) on linear mixed-effects models. CONCLUSIONS Higher FPF in POAG versus control eyes suggests the presence of mitochondrial dysfunction at the ONH rim in eyes with glaucomatous damage. The degree of FPF corresponds to disease severity, as measured by visual field and nerve fiber layer thickness metrics. FPF may thus represent a metabolic indicator of disease status that reveals the extent of injury in glaucoma.
Collapse
Affiliation(s)
- Davis B Zhou
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai
| | - Maria V Castanos
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai
| | - Lawrence Geyman
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York; Department of Ophthalmology, Illinois Eye and Ear Infirmary, Chicago, Illinois
| | | | - Apichat Tantraworasin
- Clinical Epidemiology and Clinical Statistic Center, and Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai.
| |
Collapse
|
16
|
Di Pierdomenico J, Henderson DCM, Giammaria S, Smith VL, Jamet AJ, Smith CA, Hooper ML, Chauhan BC. Age and intraocular pressure in murine experimental glaucoma. Prog Retin Eye Res 2021; 88:101021. [PMID: 34801667 DOI: 10.1016/j.preteyeres.2021.101021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
Age and intraocular pressure (IOP) are the two most important risk factors for the development and progression of open-angle glaucoma. While IOP is commonly considered in models of experimental glaucoma (EG), most studies use juvenile or adult animals and seldom older animals which are representative of the human disease. This paper provides a concise review of how retinal ganglion cell (RGC) loss, the hallmark of glaucoma, can be evaluated in EG with a special emphasis on serial in vivo imaging, a parallel approach used in clinical practice. It appraises the suitability of EG models for the purpose of in vivo imaging and argues for the use of models that provide a sustained elevation of IOP, without compromise of the ocular media. In a study with parallel cohorts of adult (3-month-old, equivalent to 20 human years) and old (2-year-old, equivalent to 70 human years) mice, we compare the effects of elevated IOP on serial ganglion cell complex thickness and individual RGC dendritic morphology changes obtained in vivo. We also evaluate how age modulates the impact of elevated IOP on RGC somal and axonal density in histological analysis as well the density of melanopsin RGCs. We discuss the challenges of using old animals and emphasize the potential of single RGC imaging for understanding the pathobiology of RGC loss and evaluating new therapeutic avenues.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Delaney C M Henderson
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara Giammaria
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victoria L Smith
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aliénor J Jamet
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Corey A Smith
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michele L Hooper
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Balwantray C Chauhan
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
17
|
Decorin-An Antagonist of TGF-β in Astrocytes of the Optic Nerve. Int J Mol Sci 2021; 22:ijms22147660. [PMID: 34299278 PMCID: PMC8306213 DOI: 10.3390/ijms22147660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
During the pathogenesis of glaucoma, optic nerve (ON) axons become continuously damaged at the optic nerve head (ONH). This often is associated with reactive astrocytes and increased transforming growth factor (TGF-β) 2 levels. In this study we tested the hypothesis if the presence or absence of decorin (DCN), a small leucine-rich proteoglycan and a natural inhibitor of several members of the TGF family, would affect the expression of the TGF-βs and connective tissue growth factor (CTGF/CCN2) in human ONH astrocytes and murine ON astrocytes. We found that DCN is present in the mouse ON and is expressed by human ONH and murine ON astrocytes. DCN expression and synthesis was significantly reduced after 24 h treatment with 3 nM CTGF/CCN2, while treatment with 4 pM TGF-β2 only reduced expression of DCN significantly. Conversely, DCN treatment significantly reduced the expression of TGF-β1, TGF-β2 and CTGF/CCN2 vis-a-vis untreated controls. Furthermore, DCN treatment significantly reduced expression of fibronectin (FN) and collagen IV (COL IV). Notably, combined treatment with DCN and triciribine, a small molecule inhibitor of protein kinase B (AKT), attenuated effects of DCN on CTGF/CCN2, TGF-β1, and TGF-β2 mRNA expression. We conclude (1) that DCN is an important regulator of TGF-β and CTGF/CCN2 expression in astrocytes of the ON and ONH, (2) that DCN thereby regulates the expression of extracellular matrix (ECM) components and (3) that DCN executes its negative regulatory effects on TGF-β and CTGF/CCN2 via the pAKT/AKT signaling pathway in ON astrocytes.
Collapse
|
18
|
Jáñez-García L, Bachtoula O, Salobrar-García E, de Hoz R, Ramirez AI, Gil P, Ramirez JM, Jáñez-Escalada L. Roughness of retinal layers in Alzheimer's disease. Sci Rep 2021; 11:11804. [PMID: 34083574 PMCID: PMC8175587 DOI: 10.1038/s41598-021-91097-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/13/2021] [Indexed: 01/20/2023] Open
Abstract
There is growing evidence that thinned retinal regions are interspersed with thickened regions in all retinal layers of patients with Alzheimer's disease (AD), causing roughness to appear on layer thickness maps. The hypothesis is that roughness of retinal layers, assessed by the fractal dimension (FD) of their thickness maps, is an early biomarker of AD. Ten retinal layers have been studied in macular volumes of optical coherence tomography from 24 healthy volunteers and 19 patients with mild AD (Mini-Mental State Examination 23.42 ± 3.11). Results show that FD of retinal layers is greater in the AD group, the differences being statistically significant (p < 0.05). Correlation of layer FD with cognitive score, visual acuity and age reach statistical significance at 7 layers. Nearly all (44 out of 45) FD correlations among layers are positive and half of them reached statistical significance (p < 0.05). Factor analysis unveiled two independent factors identified as the dysregulation of the choroidal vascular network and the retinal inflammatory process. Conclusions: surface roughness is a holistic feature of retinal layers that can be assessed by the FD of their thickness maps and it is an early biomarker of AD.
Collapse
Affiliation(s)
- Lucía Jáñez-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Madrid, Spain
| | - Omar Bachtoula
- Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, IdiSSC, Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, IdiSSC, Madrid, Spain
| | - Ana I Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, UCM, IdiSSC, Madrid, Spain
| | - Pedro Gil
- Unidad de Memoria, Servicio de Geriatría, Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina (UCM), IdiSSC, Madrid, Spain.
| | - Luis Jáñez-Escalada
- Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Chen Z, Stanbouly S, Nishiyama NC, Chen X, Delp MD, Qiu H, Mao XW, Wang C. Spaceflight decelerates the epigenetic clock orchestrated with a global alteration in DNA methylome and transcriptome in the mouse retina. PRECISION CLINICAL MEDICINE 2021; 4:93-108. [PMID: 34179686 PMCID: PMC8220224 DOI: 10.1093/pcmedi/pbab012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 01/30/2023] Open
Abstract
Astronauts exhibit an assortment of clinical abnormalities in their eyes during long-duration spaceflight. The purpose of this study was to determine whether spaceflight induces epigenomic and transcriptomic reprogramming in the retina or alters the epigenetic clock. The mice were flown for 37 days in animal enclosure modules on the International Space Station; ground-based control animals were maintained under similar housing conditions. Mouse retinas were isolated and both DNA methylome and transcriptome were determined by deep sequencing. We found that a large number of genes were differentially methylated with spaceflight, whereas there were fewer differentially expressed genes at the transcriptome level. Several biological pathways involved in retinal diseases such as macular degeneration were significantly altered. Our results indicated that spaceflight decelerated the retinal epigenetic clock. This study demonstrates that spaceflight impacts the retina at the epigenomic and transcriptomic levels, and such changes could be involved in the etiology of eye-related disorders among astronauts.
Collapse
Affiliation(s)
- Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Seta Stanbouly
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Nina C Nishiyama
- Division of Radiation Research, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xin Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Michael D Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA
| | - Xiao W Mao
- Division of Radiation Research, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
20
|
Gardiner SK, Mansberger SL, Fortune B. Time Lag Between Functional Change and Loss of Retinal Nerve Fiber Layer in Glaucoma. Invest Ophthalmol Vis Sci 2021; 61:5. [PMID: 33141891 PMCID: PMC7645201 DOI: 10.1167/iovs.61.13.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose It is often suggested that structural change is detectable before functional change in glaucoma. However, this may be related to the lower variability and hence narrower normative limits of structural tests. In this study, we ask whether a time lag exists between the true rates of change in structure and function, regardless of clinical detectability of those changes. Methods Structural equation models were used to determine whether the rate of change in function (mean linearized total deviation, AveTDLin) or structure (retinal nerve fiber layer thickness [RNFLT]) was predicted by the concurrent or previous rate for the other modality, after adjusting for its own rate in the previous time interval. Rates were calculated over 1135 pairs of consecutive visits from 318 eyes of 164 participants in the Portland Progression Project, with mean 207 days between visits. Results The rate of change of AveTDLin was predicted by its own rate in the previous time interval, but not by rates of RNFLT change in either the concurrent or previous time interval (both P > 0.05). Similarly, the rate of RNFLT change was not predicted by concurrent AveTDLin change after adjusting for its own previous rate. However, the rate of AveTDLin change in the previous time interval did significantly improve prediction of the current rate for RNFLT, with P = 0.005, suggesting a time lag of around six months between changes in AveTDLin and RNFLT. Conclusions Although RNFL thinning may be detectable sooner, true functional change appears to predict and precede thinning of the RNFL in glaucoma.
Collapse
Affiliation(s)
- Stuart K Gardiner
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Steven L Mansberger
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Brad Fortune
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
21
|
Garcia-Herranz D, Rodrigo MJ, Subias M, Martinez-Rincon T, Mendez-Martinez S, Bravo-Osuna I, Bonet A, Ruberte J, Garcia-Feijoo J, Pablo L, Garcia-Martin E, Herrero-Vanrell R. Novel Use of PLGA Microspheres to Create an Animal Model of Glaucoma with Progressive Neuroretinal Degeneration. Pharmaceutics 2021; 13:pharmaceutics13020237. [PMID: 33567776 PMCID: PMC7915113 DOI: 10.3390/pharmaceutics13020237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Progressive degeneration of neuroretinal tissue with maintained elevated intraocular pressure (IOP) to simulate chronic glaucoma was produced by intracameral injections of poly (lactic-co-glycolic) acid (PLGA) microspheres (Ms) in rat eyes. The right eye of 39 rats received different sizes of PLGA-Ms (2 µL suspension; 10% w/v): 14 with 38–20 µm Ms (Ms38/20 model) and 25 with 20–10 µm particles (Ms20/10 model). This novel glaucoma animal model was compared to the episcleral vein sclerosis (EPI) model (25 eyes). Injections were performed at baseline, two, four and six weeks. Clinical signs, IOP, retina and optic nerve thicknesses (using in vivo optical coherence tomography; OCT), and histological studies were performed. An IOP increment was observed in all three groups, however, the values obtained from the PLGA-Ms injection resulted lower with a better preservation of the ocular surface. In fact, the injection of Ms20/10 created a gentler, more progressive, and more sustained increase in IOP. This IOP alteration was correlated with a significant decrease in most OCT parameters and in histological ganglion-cell count for the three conditions throughout the eight-week follow-up. In all cases, progressive degeneration of the retina, retinal ganglion cells and optic nerve, simulating chronic glaucoma, was detected by OCT and corroborated by histological study. Results showed an alternative glaucoma model to the well-known episcleral vein model, which was simpler to perform, more reproducible and easier to monitor in vivo.
Collapse
Affiliation(s)
- David Garcia-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM, 28040 Madrid, Spain; (D.G.-H.); (I.B.-O.); (J.G.-F.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Maria Jesus Rodrigo
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM, 28040 Madrid, Spain; (D.G.-H.); (I.B.-O.); (J.G.-F.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Aina Bonet
- Center for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.B.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesus Ruberte
- Center for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.B.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Julian Garcia-Feijoo
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM, 28040 Madrid, Spain; (D.G.-H.); (I.B.-O.); (J.G.-F.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Luis Pablo
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Elena Garcia-Martin
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (T.M.-R.); (S.M.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM, 28040 Madrid, Spain; (D.G.-H.); (I.B.-O.); (J.G.-F.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain; (M.J.R.); (L.P.); (E.G.-M.)
- Instituto Universitario de Farmacia Industrial (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-1739; Fax: +34-91-394-1736
| |
Collapse
|
22
|
Wu HJ, Kuchtey J, Kuchtey RW. Increased Susceptibility to Glaucomatous Damage in Microfibril Deficient Mice. Invest Ophthalmol Vis Sci 2021; 61:28. [PMID: 32797197 PMCID: PMC7441341 DOI: 10.1167/iovs.61.10.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To test whether mice with microfibril deficiency due to the Tsk mutation of fibrillin-1 (Fbn1Tsk/+) have increased susceptibility to pressure-induced retinal ganglion cell (RGC) degeneration. Methods Intraocular pressure (IOP) elevation was induced in Fbn1Tsk/+ and wild type (wt) mice by injecting microbeads into the anterior chamber. Mice were then followed up for four months, with IOP measurements every three to six days. Retinas were stained for Brn3a to determine RGC number. Optic nerve cross-sections were stained with p-phenylene diamine to determine nerve area, axon number, and caliber and thickness of the pia mater. Results Microbead injection induced significant IOP elevation that was significantly less for Fbn1Tsk/+ mice compared with wt. The optic nerves and optic nerve axons were larger, and the elastic fiber-rich pia mater was thinner in Fbn1Tsk/+ mice. Microbead injection resulted in reduced optic nerve size, thicker pia mater, and a slight decrease in axon size. Fbn1Tsk/+ mice had significantly greater loss of RGCs and optic nerve axons compared with wt (14.8% vs. 5.8%, P = 0.002, and 17.0% vs. 7.5%, P = 0.002, respectively). Conclusions Fbn1Tsk/+mice had altered optic nerve structure as indicated by larger optic nerves, larger optic nerve axons and thinner pia mater, consistent with our previous findings. Despite lower IOP elevation, Fbn1Tsk/+mice had greater loss of RGCs and optic nerve axons, suggesting increased susceptibility to IOP-induced optic nerve degeneration in microfibril-deficient mice.
Collapse
Affiliation(s)
- Hang-Jing Wu
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rachel W Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
23
|
Quillen S, Schaub J, Quigley H, Pease M, Korneva A, Kimball E. Astrocyte responses to experimental glaucoma in mouse optic nerve head. PLoS One 2020; 15:e0238104. [PMID: 32822415 PMCID: PMC7442264 DOI: 10.1371/journal.pone.0238104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To delineate responses of optic nerve head astrocytes to sustained intraocular pressure (IOP) elevation in mice. METHODS We elevated IOP for 1 day to 6 weeks by intracameral microbead injection in 4 strains of mice. Astrocyte alterations were studied by transmission electron microscopy (TEM) including immunogold molecular localization, and by laser scanning microscopy (LSM) with immunofluorescence for integrin β1, α-dystroglycan, and glial fibrillary acidic protein (GFAP). Astrocyte proliferation and apoptosis were quantified by Ki67 and TUNEL labeling, respectively. RESULTS Astrocytes in normal optic nerve head expressed integrin β1 and α-dystroglycan by LSM and TEM immunogold labeling at electron dense junctional complexes that were found only on cell membrane zones bordering their basement membranes (BM) at the peripapillary sclera (PPS) and optic nerve head capillaries. At 1-3 days after IOP elevation, abnormal extracellular spaces appeared between astrocytes near PPS, and axonal vesical and mitochondrial accumulation indicated axonal transport blockade. By 1 week, abnormal spaces increased, new collagen formation occurred, and astrocytes separated from their BM, leaving cell membrane fragments. Electron dense junctional complexes separated or were absent at the BM. Astrocyte proliferation was modest during the first week, while only occasional apoptotic astrocytes were observed by TEM and TUNEL. CONCLUSIONS Astrocytes normally exhibit junctions with their BM which are disrupted by extended IOP elevation. Responses include reorientation of cell processes, new collagen formation, and cell proliferation.
Collapse
Affiliation(s)
- Sarah Quillen
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Julie Schaub
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Harry Quigley
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mary Pease
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Arina Korneva
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth Kimball
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
24
|
Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020; 77:100840. [PMID: 31982595 DOI: 10.1016/j.preteyeres.2020.100840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Neuroretinal rim thinning (NRR) is a characteristic glaucomatous optic disc change. However, the precise mechanism of the rim thinning has not been completely elucidated. This review focuses on the structural role of the glioarchitecture in the formation of the glaucomatous NRR thinning. The NRR is a glia-framed structure, with honeycomb geometry and mechanically reinforced astrocyte processes along the transverse plane. When neural damage selectively involves the neuron and spares the glia, the gross structure of the tissue is preserved. The disorganization and loss of the glioarchitecture are the two hallmarks of optic nerve head (ONH) remodeling in glaucoma that leads to the thinning of NRR tissue upon axonal loss. This is in contrast to most non-glaucomatous optic neuropathies with optic disc pallor where hypertrophy of the glioarchitecture is associated with the seemingly absent optic disc cupping. Arteritic anterior ischemic optic neuropathy is an exception where pan-necrosis of ONH tissue leads to NRR thinning. Milder ischemia indicates selective neuronal loss that spares glia in non-arteritic anterior ischemic optic neuropathy. The biological reason is the heterogeneous glial response determined by the site, type, and severity of the injury. The neuroglial interpretation explains how the cellular changes underlie the clinical findings. Updated understandings on glial responses illustrate the mechanical, microenvironmental, and microglial modulation of activated astrocytes in glaucoma. Findings relevant to the possible mechanism of the astrocyte death in advanced glaucoma are also emerging. Ultimately, a better understanding of glaucomatous glial response may lead to glia-targeting neuroprotection in the future.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
25
|
Buchanan RA, Foley KE, Pepper KW, Reagan AM, Keezer KJ, Hewes AA, Diemler CA, Preuss C, Soto I, John SWM, Howell GR. Meox2 Haploinsufficiency Accelerates Axonal Degeneration in DBA/2J Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:3283-3296. [PMID: 31369031 PMCID: PMC6676925 DOI: 10.1167/iovs.18-26126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Glaucoma is a complex disease with major risk factors including advancing age and increased intraocular pressure (IOP). Dissecting these earliest events will likely identify new avenues for therapeutics. Previously, we performed transcriptional profiling in DBA/2J (D2) mice, a widely used mouse model relevant to glaucoma. Here, we use these data to identify and test regulators of early gene expression changes in DBA/2J glaucoma. Methods Upstream regulator analysis (URA) in Ingenuity Pathway Analysis was performed to identify potential master regulators of differentially expressed genes. The function of one putative regulator, mesenchyme homeobox 2 (Meox2), was tested using a combination of genetic, biochemical, and immunofluorescence approaches. Results URA identified Meox2 as a potential regulator of early gene expression changes in the optic nerve head (ONH) of DBA/2J mice. Meox2 haploinsufficiency did not affect the characteristic diseases of the iris or IOP elevation seen in DBA/2J mice but did cause a significant increase in the numbers of eyes with axon damage compared to controls. While young mice appeared normal, aged Meox2 haploinsufficient DBA/2J mice showed a 44% reduction in MEOX2 protein levels. This correlated with modulation of age- and disease-specific vascular and myeloid alterations. Conclusions Our data support a model whereby Meox2 controls IOP-dependent vascular remodeling and neuroinflammation to promote axon survival. Promoting these earliest responses prior to IOP elevation may be a viable neuroprotective strategy to delay or prevent human glaucoma.
Collapse
Affiliation(s)
| | - Kate E Foley
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | | | | | - Kelly J Keezer
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Amanda A Hewes
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Cory A Diemler
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | | | - Ileana Soto
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States.,Department of Biomedical and Translational Sciences, Rowan University, Glassboro, New Jersey, United States
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States.,The Howard Hughes Medical Institute, Bar Harbor, Maine, United States.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States
| |
Collapse
|
26
|
Enlarged Optic Nerve Axons and Reduced Visual Function in Mice with Defective Microfibrils. eNeuro 2018; 5:eN-NWR-0260-18. [PMID: 30406200 PMCID: PMC6220594 DOI: 10.1523/eneuro.0260-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/13/2018] [Indexed: 01/13/2023] Open
Abstract
Glaucoma is a leading cause of irreversible vision loss due to retinal ganglion cell (RGC) degeneration that develops slowly with age. Elevated intraocular pressure (IOP) is a significant risk factor, although many patients develop glaucoma with IOP in the normal range. Mutations in microfibril-associated genes cause glaucoma in animal models, suggesting the hypothesis that microfibril defects contribute to glaucoma. To test this hypothesis, we investigated IOP and functional/structural correlates of RGC degeneration in mice of either sex with abnormal microfibrils due to heterozygous Tsk mutation of the fibrilin-1 gene (Fbn1Tsk/+). Although IOP was not affected, Fbn1Tsk/+ mice developed functional deficits at advanced age consistent with glaucoma, including reduced RGC responses in electroretinogram (ERG) experiments. While RGC density in the retina was not affected, the density of RGC axons in the optic nerve was significantly reduced in Fbn1Tsk/+ mice. However, reduced axon density correlated with expanded optic nerves, resulting in similar numbers of axons in Fbn1Tsk/+ and control nerves. Axons in the optic nerves of Fbn1Tsk/+ mice were significantly enlarged and axon diameter was strongly correlated with optic nerve area, as has been reported in early pathogenesis of the DBA/2J mouse model of glaucoma. Our results suggest that microfibril abnormalities can lead to phenotypes found in early-stage glaucomatous neurodegeneration. Thinning of the elastic fiber-rich pia mater was found in Fbn1Tsk/+ mice, suggesting mechanisms allowing for optic nerve expansion and a possible biomechanical contribution to determination of axon caliber.
Collapse
|
27
|
Smith MA, Plyler ES, Dengler-Crish CM, Meier J, Crish SD. Nodes of Ranvier in Glaucoma. Neuroscience 2018; 390:104-118. [PMID: 30149050 DOI: 10.1016/j.neuroscience.2018.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023]
Abstract
Retinal ganglion cell axons of the DBA/2J mouse model of glaucoma, a model characterized by extensive neuroinflammation, preserve synaptic contacts with their subcortical targets for a time after onset of anterograde axonal transport deficits, axon terminal hypertrophy, and cytoskeletal alterations. Though retrograde axonal transport is still evident in these axons, it is unknown if they retain their ability to transmit visual information to the brain. Using a combination of in vivo multiunit electrophysiology, neuronal tract tracing, multichannel immunofluorescence, and transmission electron microscopy, we report that eye-brain signaling deficits precede transport loss and axonal degeneration in the DBA/2J retinal projection. These deficits are accompanied by node of Ranvier pathology - consisting of increased node length and redistribution of the voltage-gated sodium channel Nav1.6 that parallel changes seen early in multiple sclerosis (MS) axonopathy. Further, with age, axon caliber and neurofilament density increase without corresponding changes in myelin thickness. In contrast to these findings in DBA/2J mice, node pathologies were not observed in the induced microbead occlusion model of glaucoma - a model that lacks pre-existing inflammation. After one week of systemic treatment with fingolimod, an immunosuppressant therapy for relapsing-remitting MS, DBA/2J mice showed a substantial reduction in node pathology and mild effects on axon morphology. These data suggest that neurophysiological deficits in the DBA/2J may be due to defects in intact axons and targeting node pathology may be a promising intervention for some types of glaucoma.
Collapse
Affiliation(s)
- M A Smith
- Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - E S Plyler
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, United States
| | - C M Dengler-Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - J Meier
- Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - S D Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States.
| |
Collapse
|