1
|
Owji AP, Dong J, Kittredge A, Wang J, Zhang Y, Yang T. Neurotransmitter-bound bestrophin channel structures reveal small molecule drug targeting sites for disease treatment. Nat Commun 2024; 15:10766. [PMID: 39737942 DOI: 10.1038/s41467-024-54938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels. Extensive analyses were carried out for a potent activator, 4-aminobenzoic acid (PABA): PABA-bound Best1 and Best2 structures are solved and illustrate the same binding site as in GABA-bound Best2; PABA treatment rescues the functional deficiency of patient-derived Best1 mutations. Together, our results demonstrate the mechanism and potential of multiple small molecule candidates as clinically applicable drugs for bestrophin-associated diseases/conditions.
Collapse
Affiliation(s)
- Aaron P Owji
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Jingyun Dong
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Alec Kittredge
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Jiali Wang
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Yu Zhang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| | - Tingting Yang
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Kellner S, Weinitz S, Farmand G, Kellner U. Near-Infrared Autofluorescence: Early Detection of Retinal Pigment Epithelial Alterations in Inherited Retinal Dystrophies. J Clin Med 2024; 13:6886. [PMID: 39598030 PMCID: PMC11594703 DOI: 10.3390/jcm13226886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique used to examine the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within RPE cells. It serves as a protective antioxidative factor and is involved in the phagocytosis of photoreceptor outer segments. Disorders affecting the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. NIA allows us to detect early alterations in various chorioretinal disorders, frequently before they are ophthalmoscopically visible and often prior to alterations in lipofuscin-associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, the findings for both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders, especially inherited retinal dystrophies (IRDs), indicating that NIA detects earlier alterations compared to FAF. Foveal alterations can be much more easily detected using NIA compared to FAF. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant Best disease, when FAF and OCT are still normal. In other IRDs, a preserved subfoveal NIA intensity is associated with good visual acuity. So far, the current knowledge on NIA in IRD has been presented in multiple separate publications but has not been summarized in an overview. This review presents the current knowledge on NIA in IRD and demonstrates NIA biomarkers.
Collapse
Affiliation(s)
- Simone Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Silke Weinitz
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Ghazaleh Farmand
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
| | - Ulrich Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| |
Collapse
|
3
|
Kunala K, Tang JAH, Parkins K, Hunter JJ. Multispectral label-free in vivo cellular imaging of human retinal pigment epithelium using adaptive optics fluorescence lifetime ophthalmoscopy improves feasibility for low emission analysis and increases sensitivity for detecting changes with age and eccentricity. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22707. [PMID: 38962492 PMCID: PMC11221116 DOI: 10.1117/1.jbo.29.s2.s22707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
Significance Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) provides a label-free approach to observe functional and molecular changes at cellular scale in vivo. Adding multispectral capabilities improves interpretation of lifetime fluctuations due to individual fluorophores in the retinal pigment epithelium (RPE). Aim To quantify the cellular-scale changes in autofluorescence with age and eccentricity due to variations in lipofuscin, melanin, and melanolipofuscin in RPE using multispectral AOFLIO. Approach AOFLIO was performed on six subjects at seven eccentricities. Four imaging channels (λ ex / λ em ) were used: 473/SSC, 473/LSC, 532/LSC, and 765/NIR. Cells were segmented and the timing signals of each pixel in a cell were combined into a single histogram, which were then used to compute the lifetime and phasor parameters. An ANOVA was performed to investigate eccentricity and spectral effects on each parameter. Results A repeatability analysis revealed < 11.8 % change in lifetime parameters in repeat visits for 532/LSC. The 765/NIR and 532/LSC had eccentricity and age effects similar to previous reports. The 473/LSC had a change in eccentricity with mean lifetime and a phasor component. Both the 473/LSC and 473/SSC had changes in eccentricity in the short lifetime component and its relative contribution. The 473/SSC had no trend in eccentricity in phasor. The comparison across the four channels showed differences in lifetime and phasor parameters. Conclusions Multispectral AOFLIO can provide a more comprehensive picture of changes with age and eccentricity. These results indicate that cell segmentation has the potential to allow investigations in low-photon scenarios such as in older or diseased subjects with the co-capture of an NIR channel (such as 765/NIR) with the desired spectral channel. This work represents the first multispectral, cellular-scale fluorescence lifetime comparison in vivo in the human RPE and may be a useful method for tracking diseases.
Collapse
Affiliation(s)
- Karteek Kunala
- Stanford University, Byers Eye Institute, Palo Alto, California, United States
| | - Janet A. H. Tang
- University of Rochester, Center for Visual Science, Rochester, New York, United States
- University of Rochester, The Institute of Optics, Rochester, New York, United States
| | - Keith Parkins
- University of Rochester, Center for Visual Science, Rochester, New York, United States
| | - Jennifer J. Hunter
- University of Rochester, Center for Visual Science, Rochester, New York, United States
- University of Rochester, The Institute of Optics, Rochester, New York, United States
- University of Waterloo, School of Optometry and Vision Science, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Kunala K, Tang JAH, Bowles Johnson KE, Huynh KT, Parkins K, Kim HJ, Yang Q, Sparrow JR, Hunter JJ. Near Infrared Autofluorescence Lifetime Imaging of Human Retinal Pigment Epithelium Using Adaptive Optics Scanning Light Ophthalmoscopy. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38758638 PMCID: PMC11107951 DOI: 10.1167/iovs.65.5.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Purpose To demonstrate the first near-infrared adaptive optics fluorescence lifetime imaging ophthalmoscopy (NIR-AOFLIO) measurements in vivo of the human retinal pigment epithelial (RPE) cellular mosaic and to visualize lifetime changes at different retinal eccentricities. Methods NIR reflectance and autofluorescence were captured using a custom adaptive optics scanning light ophthalmoscope in 10 healthy subjects (23-64 years old) at seven eccentricities and in two eyes with retinal abnormalities. Repeatability was assessed across two visits up to 8 weeks apart. Endogenous retinal fluorophores and hydrophobic whole retinal extracts of Abca4-/- pigmented and albino mice were imaged to probe the fluorescence origin of NIR-AOFLIO. Results The RPE mosaic was resolved at all locations in five of seven younger subjects (<35 years old). The mean lifetime across near-peripheral regions (8° and 12°) was longer compared to near-foveal regions (0° and 2°). Repeatability across two visits showed moderate to excellent correlation (intraclass correlation: 0.88 [τm], 0.75 [τ1], 0.65 [τ2], 0.98 [a1]). The mean lifetime across drusen-containing eyes was longer than in age-matched healthy eyes. Fluorescence was observed in only the extracts from pigmented Abca4-/- mouse. Conclusions NIR-AOFLIO was repeatable and allowed visualization of the RPE cellular mosaic. An observed signal in only the pigmented mouse extract infers the fluorescence signal originates predominantly from melanin. Variations observed across the retina with intermediate age-related macular degeneration suggest NIR-AOFLIO may act as a functional measure of a biomarker for in vivo monitoring of early alterations in retinal health.
Collapse
Affiliation(s)
- Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Janet A. H. Tang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Kristen E. Bowles Johnson
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, California, United States
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hye-Jin Kim
- College of Pharmacy, Keimyung University, Dalseo-gu, Daegu, South Korea
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Paavo M, Lee W, Parmann R, Lima de Carvalho JR, Zernant J, Tsang SH, Allikmets R, Sparrow JR. Insights Into PROM1-Macular Disease Using Multimodal Imaging. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37093133 PMCID: PMC10148657 DOI: 10.1167/iovs.64.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose To describe the features of genetically confirmed PROM1-macular dystrophy in multimodal images. Methods Thirty-six (36) eyes of 18 patients (5-66 years; mean age, 42.4 years) were prospectively studied by clinical examination and multimodal imaging. Short-wavelength autofluorescence (SW-AF) and quantitative fundus autofluorescence (qAF) images were acquired with a scanning laser ophthalmoscope (HRA+OCT, Heidelberg Engineering) modified by insertion of an internal autofluorescent reference. Further clinical testing included near-infrared autofluorescence (NIR-AF; HRA2, Heidelberg Engineering) with semiquantitative analysis, spectral domain-optical coherence tomography (HRA+OCT) and full-field electroretinography. All patients were genetically confirmed by exome sequencing. Results All 18 patients presented with varying degrees of maculopathy. One family with individuals affected across two generations exhibited granular fleck-like deposits across the posterior pole. Areas of granular deposition in SW-AF and NIR-AF corresponded to intermittent loss of the ellipsoid zone, whereas discrete regions of hypoautofluorescence corresponded with a loss of outer retinal layers in spectral-domain optical coherence tomography scans. For 18 of the 20 eyes, qAF levels within the macula were within the 95% confidence intervals of healthy age-matched individuals; nor was the mean NIR-AF signal increased relative to healthy eyes. Conclusions Although PROM1-macular dystrophy (Stargardt disease 4) can exhibit phenotypic overlap with recessive Stargardt disease, significantly increased SW-AF levels were not detected. As such, elevated bisretinoid lipofuscin may not be a feature of the pathophysiology of PROM1 disease. The qAF approach could serve as a method of early differential diagnosis and may help to identify appropriate disease targets as therapeutics become available to treat inherited retinal disease.
Collapse
Affiliation(s)
- Maarjaliis Paavo
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
- Helsinki University Eye Hospital, Helsinki, Finland
| | - Winston Lee
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Rait Parmann
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | | | - Jana Zernant
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Rando Allikmets
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York, United States
- Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| |
Collapse
|
6
|
Lee W, Su PY, Zernant J, Nagasaki T, Tsang SH, Allikmets R. Longitudinal Analysis of a Resolving Foveomacular Vitelliform Lesion in ABCA4 Disease. Ophthalmol Retina 2022; 6:847-860. [PMID: 35413457 PMCID: PMC9464664 DOI: 10.1016/j.oret.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe the longitudinal progression and phenotypic association of bilateral foveomacular vitelliform lesions in the setting of ABCA4 disease. DESIGN Case report and cross-sectional cohort study. PARTICIPANTS Nineteen patients with confirmed ABCA4 disease exhibiting an optical gap phenotype. METHODS Multimodal retinal imaging across multiple visits included autofluorescence imaging, spectral-domain OCT (SD-OCT), and OCT angiography. Electro-oculogram (EOG) and full-field electroretinogram testing results were analyzed. Exome sequencing was performed for diagnostic confirmation and the verification of other variations. MAIN OUTCOME MEASURES Light-peak-to-dark-trough ratio (Arden ratio) on EOG; thickness and en face maps of various retinal layers on SD-OCT; area measurements on 488- and 787-nm autofluorescence images; and the presence of variation in vitelliform-associated genes identified using exome sequencing. RESULTS A 25-year-old White man presented with bilateral central vision loss due to foveal lesions consisting of vitelliform fluid. The result of EOG testing was inconsistent with bestrophinopathy (Arden ratio = 1.62), and no generalized rod or cone dysfunction was detected on full-field electroretinogram. Exome sequencing identified the pathogenic variants c.5882G>A (p.(Gly1961Glu)) and c.4139C>T (p.(Pro1380Leu)) in ABCA4 and no other vitelliform-associated genes. Significant thinning and abnormal reflectivity of photoreceptor-attributable layers as well as near-infrared autofluorescence abnormalities were found in lesion-adjacent areas. Complete resorption of the vitelliform fluid occurred after 30 months, after which the optical gap lesions exhibited an enlarged and "cavitated" appearance. Phenotypic screening for additional cases from a large ABCA4 disease database (n = 602) identified 18 additional patients at various stages of optical gap lesion formation, most of whom harbored the c.5882G>A (p.(Gly1961Glu)) variant (P < 0.001), although none had apparent vitelliform fluid. At least 5 of the 18 (31.6%) patients exhibited optical gap lesions with the distinct "cavitated" appearance, whereas the lesions remained unperturbed in the other patients over the course of examination. CONCLUSIONS Foveomacular vitelliform deposition is a mechanistically congruent but rare manifestation of ABCA4 disease. Specifically, this disease phenotype may be clinically associated with the c.5882G>A (p.(Gly1961Glu)) allele and optical gap lesions.
Collapse
Affiliation(s)
- Winston Lee
- Department of Genetics & Development, Columbia University, New York, New York; Department of Ophthalmology, Columbia University, New York, New York
| | - Pei-Yin Su
- Department of Ophthalmology, Columbia University, New York, New York
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York
| | - Stephen H Tsang
- Department of Genetics & Development, Columbia University, New York, New York; Department of Pathology & Cell Biology, Columbia University, New York, New York
| | - Rando Allikmets
- Department of Genetics & Development, Columbia University, New York, New York; Department of Pathology & Cell Biology, Columbia University, New York, New York.
| |
Collapse
|
7
|
Parmann R, Greenstein VC, Tsang SH, Sparrow JR. Choroideremia Carriers: Dark-Adapted Perimetry and Retinal Structures. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35816046 PMCID: PMC9284471 DOI: 10.1167/iovs.63.8.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In choroideremia (CHM) carriers, scotopic sensitivity was assessed by dark adapted chromatic perimetry (DACP) and outer retinal structure was evaluated by multimodal imaging. Methods Nine carriers (18 eyes) and 13 healthy controls (13 eyes) underwent DACP testing with cyan and red stimuli. Analysis addressed peripapillary (4 test locations closest to the optic disc), macular (52 locations), and peripheral (60 locations outside the macula) regions. Responses were considered to be rod-mediated when cyan relative to red sensitivity was >5 dB. Fundus imaging included spectral domain optical coherence tomography (SD-OCT), short-wavelength (SW-AF), near-infrared (NIR-AF), ultrawide-field (200 degrees) pseudocolor fundus imaging, and quantitative (qAF) fundus autofluorescence. Results Detection of the cyan stimulus was rod mediated in essentially all test locations (99.7%). In the macular and peripheral areas, DACP sensitivity values were not significantly different from healthy eyes. In the peripapillary area, sensitivities were significantly decreased (P < 0.05). SD-OCT imaging ranged from hyper-reflective lesions and discontinuities of the outer retinal bands to hypertransmission of signal. SW-AF and NIR-AF images presented with peripapillary atrophy in seven patients (14 eyes). Mosaicism was detectable in SW-AF images in seven patients and in NIR-AF images in five patients. Frank hypo-autofluorescence was visible in eight patients with distinct chorioretinopathy in seven patients. The qAF values were below the 95% confidence interval (CI) of healthy age-matched individuals in 12 eyes. Conclusions Rod mediated scotopic sensitivity was comparable to that in control eyes in macular and peripheral areas but was decreased in the peripapillary area where changes in retinal structure were also most severe.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, New York, NY, United States
| | | | - Stephen H Tsang
- Departments of Ophthalmology, Columbia University, New York, NY, United States.,Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University, New York, NY, United States.,Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Tian L, Chen C, Song Y, Zhang X, Xu K, Xie Y, Jin ZB, Li Y. Phenotype-Based Genetic Analysis Reveals Missing Heritability of ABCA4-Related Retinopathy: Deep Intronic Variants and Copy Number Variations. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35657619 PMCID: PMC9185996 DOI: 10.1167/iovs.63.6.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To identify the missing heritability of ABCA4-related retinopathy in a Chinese cohort. Methods We recruited 33 unrelated patients with ABCA4-related retinopathy carrying a monoallelic variant in ABCA4. All patients underwent ophthalmic examinations. Next-generation sequencing of the whole ABCA4 sequence, including coding and noncoding regions, was performed to detect deep intronic variants (DIVs) and copy number variations (CNVs). Results We identified eight missing pathogenic ABCA4 variants in 60.6% of the patients (20/33), which comprised five DIVs and three CNVs. The five DIVs, including four novel (c.1555-816T>G, c.2919-169T>G, c.2919-884G>T, and c.5461-1321A>G) and one reported (c.4539+1100A>G), accounted for the missing alleles in 51.5% of the patients. Minigene assays showed that four novel DIVs activated cryptic splice sites leading to the insertions of pseudoexons. The three novel CNVs consisted of one gross deletion of 1273 bp (exon 2) and two gross duplications covering 25.2 kb (exons 28-43) and 9.4 kb (exons 38-44). The microhomology domains were identified at the breakpoints and revealed the potential mechanisms of CNV formation. Conclusions DIVs and CNVs explained approximately two-thirds of the unresolved Chinese cases with ABCA4-related retinopathy. Combining results from phenotypic-directed screening, targeting the whole ABCA4 sequencing and in silico tools can help to identify the missing heritability.
Collapse
Affiliation(s)
- Lu Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Chunjie Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yuning Song
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xiaohui Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Ke Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yue Xie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| |
Collapse
|
9
|
Meleppat RK, Ronning KE, Karlen SJ, Burns ME, Pugh EN, Zawadzki RJ. In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium. Sci Rep 2021; 11:16252. [PMID: 34376700 PMCID: PMC8355111 DOI: 10.1038/s41598-021-95320-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Melanosomes, lipofuscin, and melanolipofuscin are the three principal types of pigmented granules found in retinal pigment epithelium (RPE) cells. Changes in the density of melanosomes and lipofuscin in RPE cells are considered hallmarks of various retinal diseases, including Stargardt disease and age-related macular degeneration (AMD). Herein, we report the potential of an in vivo multimodal imaging technique based on directional back-scattering and short-wavelength fundus autofluorescence (SW-FAF) to study disease-related changes in the density of melanosomes and lipofuscin granules in RPE cells. Changes in the concentration of these granules in Abca4-/- mice (a model of Stargardt disease) relative to age-matched wild-type (WT) controls were investigated. Directional optical coherence tomography (dOCT) was used to assess melanosome density in vivo, whereas the autofluorescence (AF) images and emission spectra acquired with a spectrometer-integrated scanning laser ophthalmoscope (SLO) were used to characterize lipofuscin and melanolipofuscin granules in the same RPE region. Subcellular-resolution ex vivo imaging using confocal fluorescence microscopy and electron microscopy was performed on the same tissue region to visualize and quantify melanosomes, lipofuscin, and melanolipofuscin granules. Comparisons between in vivo and ex vivo results confirmed an increased concentration of lipofuscin granules and decreased concentration of melanosomes in the RPE of Abca4-/- mice, and provided an explanation for the differences in fluorescence and directionality of RPE scattering observed in vivo between the two mouse strains.
Collapse
Affiliation(s)
- Ratheesh K Meleppat
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA
| | - Kaitryn E Ronning
- Center for Neuroscience, University of California Davis, Davis, CA, 95618, USA
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Marie E Burns
- Center for Neuroscience, University of California Davis, Davis, CA, 95618, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA
| | - Edward N Pugh
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Robert J Zawadzki
- UC Davis Eyepod Imaging Laboratory, University of California Davis, Davis, CA, 95616, USA.
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA.
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
10
|
Arunkumar R, Gorusupudi A, Li B, Blount JD, Nwagbo U, Kim HJ, Sparrow JR, Bernstein PS. Lutein and zeaxanthin reduce A2E and iso-A2E levels and improve visual performance in Abca4 -/-/Bco2 -/- double knockout mice. Exp Eye Res 2021; 209:108680. [PMID: 34161819 PMCID: PMC8595537 DOI: 10.1016/j.exer.2021.108680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Accumulation of bisretinoids such as A2E and its isomer iso-A2E is thought to mediate blue light-induced oxidative damage associated with age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1). We hypothesize that increasing dietary intake of the macular carotenoids lutein and zeaxanthin in individuals at risk of AMD and STGD1 can inhibit the formation of bisretinoids A2E and iso-A2E, which can potentially ameliorate macular degenerative diseases. To study the beneficial effect of macular carotenoids in a retinal degenerative diseases model, we used ATP-binding cassette, sub-family A member 4 (Abca4-/-)/β,β-carotene-9',10'-oxygenase 2 (Bco2-/-) double knockout (KO) mice that accumulate elevated levels of A2E and iso-A2E in the retinal pigment epithelium (RPE) and macular carotenoids in the retina. Abca4-/-/Bco2-/- and Abca4-/- mice were fed a lutein-supplemented chow, zeaxanthin-supplemented chow or placebo chow (~2.6 mg of carotenoid/mouse/day) for three months. Visual function and electroretinography (ERG) were measured after one month and three months of carotenoid supplementation. The lutein and zeaxanthin supplemented Abca4-/-/Bco2-/- mice had significantly lower levels of RPE/choroid A2E and iso-A2E compared to control mice fed with placebo chow and improved visual performance. Carotenoid supplementation in Abca4-/- mice minimally raised retinal carotenoid levels and did not show much difference in bisretinoid levels or visual function compared to the control diet group. There was a statistically significant inverse correlation between carotenoid levels in the retina and A2E and iso-A2E levels in the RPE/choroid. Supplementation with retinal carotenoids, especially zeaxanthin, effectively inhibits bisretinoid formation in a mouse model of STGD1 genetically enhanced to accumulate carotenoids in the retina. These results provide further impetus to pursue oral carotenoids as therapeutic interventions for STGD1 and AMD.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Binxing Li
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - J David Blount
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Fujita A, Amari T, Ueda K, Azuma K, Inoue T, Komatsu K, Yamamoto M, Aoki N, Yamanari M, Sugiyama S, Aihara M, Kato S, Obata R. Three-Dimensional Distribution Of Fundus Depolarization and Associating Factors Measured Using Polarization-Sensitive Optical Coherence Tomography. Transl Vis Sci Technol 2021; 10:30. [PMID: 34003915 PMCID: PMC7900852 DOI: 10.1167/tvst.10.2.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To investigate the three-dimensional distribution and associating demographic factors of depolarization, using polarization-sensitive optical coherence tomography (PS-OCT), to evaluate melanin pigmentation in the retinal pigment epithelium (RPE) and choroid in healthy eyes. Methods In total, 39 unaffected healthy eyes of 39 subjects were examined using a PS-OCT clinical prototype. The degree of depolarization, expressed as the polarimetric entropy, was assessed in the RPE, the superficial and the total choroid layer, especially in the center, the inner, or the outer areas centered at the fovea. The values and their association with the demographic data were analyzed. Near-infrared fundus autofluorescence (NIRAF) was also used, in the same manner, for the comparison. Twenty-eight of 39 eyes were measured twice to evaluate intrasession repeatability. Results Both the polarimetric entropy in the RPE and the gray level in NIRAF, decreased from the center to the periphery (P < 0.001). The polarimetric entropy in the RPE was significantly associated with age in each area (P ≤ 0.001). In the RPE and the superficial choroid, the polarimetric entropy was negatively associated with axial length in each area (P ≤ 0.002). The intraclass correlation coefficient of the polarimetric entropy in the same session was excellent in each area of the RPE, superficial choroid, or total choroid layer (0.94–0.98). Conclusions The distribution of fundus melanin pigment-related depolarization was evaluated using PS-OCT. The depolarization was associated with the subjects’ demographic data, such as age or axial length. Translational Relevance The presented information in healthy eyes provides an essential basis for the investigation into a variety of chorioretinal pathologies.
Collapse
Affiliation(s)
- Asahi Fujita
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan.,Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tatsuaki Amari
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan.,Eguchi Eye Hospital, Hakodate, Japan
| | - Kohei Ueda
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Keiko Azuma
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Tatsuya Inoue
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan.,Department of Ophthalmology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kayoko Komatsu
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Motoshi Yamamoto
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | - Makoto Aihara
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoshi Kato
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryo Obata
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Sparrow JR, Parmann R, Tsang SH, Allikmets R, Chang S, Jauregui R. Shared Features in Retinal Disorders With Involvement of Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 34115091 PMCID: PMC8196415 DOI: 10.1167/iovs.62.7.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
When using spectral domain optical coherence tomography (SD-OCT) to inform the status of outer retina, we have noted discrete hyperreflective lesions extending through photoreceptor-attributable bands that have a similar presentation in multiple retinal diseases. These lesions present as either corrugated thickenings of interdigitation zone and ellipsoid zone bands or in later stages as rectangular or pyramidal shaped foci that extend radially through photoreceptor cell-attributable bands. In ABCA4-related and peripherin-2/RDS-disease (PRPH2/RDS), monogenic forms of retinopathy caused by mutations in proteins expressed in photoreceptor cells, these punctate lesions colocalize with fundus flecks in en face images. In fundus albipunctatus and retinitis punctata albescens, diseases caused by mutations in genes (retinol dehydrogenase 5, RDH5; and retinaldehyde-binding protein 1, RLBP1) encoding proteins of the visual cycle, these lesions manifest as white dot-like puncta. Similar aberrations in photoreceptor cell-attributable SD-OCT reflectivity layers manifest as reticular pseudodrusen (RPD) in short-wavelength fundus autofluorescence and near-infrared fundus autofluorescence fundus images and are linked to age-related macular degeneration a complex disease. Despite differences in the etiologies of retinal diseases presenting as fundus flecks, dots and RPD, underlying degenerative processes in photoreceptor cells are signified in SD-OCT scans by the loss of structural features that would otherwise define healthy photoreceptor cells at these foci.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Rait Parmann
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States
| | - Stephen H Tsang
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Rando Allikmets
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Stanley Chang
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States
| | - Ruben Jauregui
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States
| |
Collapse
|
13
|
Identification of a novel GPR143 mutation in a large Chinese family with isolated foveal hypoplasia. BMC Ophthalmol 2021; 21:156. [PMID: 33785018 PMCID: PMC8011130 DOI: 10.1186/s12886-021-01905-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pathogenic variants of G-protein coupled receptor 143 (GPR143) gene often leads to ocular albinism type I (OA1) characterized by nystagmus, iris and fundus hypopigmentation, and foveal hypoplasia. In this study, we identified a novel hemizygous nonsense mutation in GPR143 that caused an atypical manifestation of OA1. Case presentation We reported a large Chinese family in which all affected individuals are afflicted with poor visual acuity and foveal hypoplasia without signs of nystagmus. Fundus examination of patients showed an absent foveal reflex and mild hypopigmentation. The fourth grade of foveal hypoplasia and the reduced area of blocked fluorescence at foveal region was detected in OCT. OCTA imaging showed the absence of foveal avascular zone. In addition, the amplitude of multifocal ERG was reduced in the central ring. Gene sequencing results revealed a novel hemizygous mutation (c.939G > A) in GPR143 gene, which triggered p.W313X. However, no iris depigmentation and nystagmus were observed among both patients and carriers. Conclusions In this study, we reported a novel nonsense mutation of GPR143 in a large family with poor visual acuity and isolated foveal hypoplasia without nystagmus, which further expanded the genetic mutation spectrum of GPR143.
Collapse
|
14
|
Schmitz-Valckenberg S, Pfau M, Fleckenstein M, Staurenghi G, Sparrow JR, Bindewald-Wittich A, Spaide RF, Wolf S, Sadda SR, Holz FG. Fundus autofluorescence imaging. Prog Retin Eye Res 2021; 81:100893. [PMID: 32758681 DOI: 10.1016/j.preteyeres.2020.100893] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Fundus autofluorescence (FAF) imaging is an in vivo imaging method that allows for topographic mapping of naturally or pathologically occurring intrinsic fluorophores of the ocular fundus. The dominant sources are fluorophores accumulating as lipofuscin in lysosomal storage bodies in postmitotic retinal pigment epithelium cells as well as other fluorophores that may occur with disease in the outer retina and subretinal space. Photopigments of the photoreceptor outer segments as well as macular pigment and melanin at the fovea and parafovea may act as filters of the excitation light. FAF imaging has been shown to be useful with regard to understanding of pathophysiological mechanisms, diagnostics, phenotype-genotype correlation, identification of prognostic markers for disease progression, and novel outcome parameters to assess efficacy of interventional strategies in chorio-retinal diseases. More recently, the spectrum of FAF imaging has been expanded with increasing use of green in addition to blue FAF, introduction of spectrally-resolved FAF, near-infrared FAF, quantitative FAF imaging and fluorescence life time imaging (FLIO). This article gives an overview of basic principles, FAF findings in various retinal diseases and an update on recent developments.
Collapse
Affiliation(s)
- Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, USA
| | | | - Giovanni Staurenghi
- Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital University of Milan, Italy
| | - Janet R Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Almut Bindewald-Wittich
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Augenheilkunde Heidenheim MVZ, Heidenheim, Germany
| | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Han L, de Carvalho JRL, Parmann R, Tezel TH, Chang S, Sharma T, Sparrow JR. Central Serous Chorioretinopathy Analyzed by Multimodal Imaging. Transl Vis Sci Technol 2021; 10:15. [PMID: 33510954 PMCID: PMC7804571 DOI: 10.1167/tvst.10.1.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose We correlated quantitative fundus autofluorescence (qAF) with other fundus features in patients exhibiting central serous chorioretinopathy (CSC). Methods Short wavelength fundus autofluorescence (SW-AF, 488 nm excitation) was measured by qAF. Using nonnormalized images qAF values were calculated within eight concentric segments (qAF8) located at an eccentricity of 7° to 9°. Horizontal spectral domain optical coherence tomography (SD-OCT) scans and near-infrared fundus autofluorescence images (NIR-AF) were studied. Results Thirty-six eyes of 20 patients (mean age 48.7± 8.5 years) diagnosed with CSC were studied. Thirteen patients had bilateral disease; four patients were female. In 22 eyes CSC was present in the macula; in one eye the lesion was in a peripapillary location, 10 involved both locations, and three were unaffected. Serous retinal detachment, retinal pigmented epithelial detachment (PED), outer retinal atrophy and subRPE hypertransmission were all features identifiable by SD-OCT. NIR-AF images were helpful in detecting foveal and parafoveal lesions. Sampling for retina-wide elevations in SW-AF intensity by measuring qAF8 did not indicate a generalizable relationship amongst CSC-diagnosed eyes. However, color-coded qAF images revealed alterations in SW-AF topography and intensity relative to healthy eyes at the same locations. Thus zones of higher than normal qAF intensity were found in association with SD-OCT detectable PED; loss of ellipsoid zone and interdigitation zone; and hyperreflectivity in outer retina. Pronounced decreases in qAF colocalized with serous retinal detachment and with outer retinal degeneration that included hypertransmission of SD-OCT signal into the choroid. Conclusions Localized elevations in qAF reflect increased bisretinoid in association with CSC lesions. Translational Relevance Foci of elevated qAF at some stages of CSC contribute to the natural history of the disease.
Collapse
Affiliation(s)
- Liang Han
- Department of Ophthalmology, Columbia University, New York, New York, USA.,Department of Ophthalmology, Peking University Third Hospital, Beijing key laboratory of restoration of damaged ocular nerve, Beijing, China
| | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University, New York, New York, USA.,Department of Ophthalmology, Hospital das Clínicas de Pernambuco - Empresa Brasileira de Serviços Hospitalares, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Rait Parmann
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Tongalp H Tezel
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Stanley Chang
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Tarun Sharma
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Bonilha VL, Bell BA, Hu J, Milliner C, Pauer GJ, Hagstrom SA, Radu RA, Hollyfield JG. Geographic Atrophy: Confocal Scanning Laser Ophthalmoscopy, Histology, and Inflammation in the Region of Expanding Lesions. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 32658960 PMCID: PMC7425718 DOI: 10.1167/iovs.61.8.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To describe the pathology of AMD in eyes with geographic atrophy (GA) using confocal scanning laser ophthalmoscopy (SLO) blue light autofluorescence (BAF), and near-infrared (IR) AF and to correlate it with the histology and immunohistochemistry analysis at the margins of the GA lesion. Methods Enucleated, fixed eyes from seventeen donors with GA were imaged and analyzed by BAF-SLO, IRAF-SLO, and by fundus macroscopy (FM). Tissue from the margins of the GA lesions was cut and processed for resin embedding and histology or cryosectioning and fluorescence in the green and far-red channels, and immunohistochemistry to assess markers of inflammation. Isolated DNA from donors was genotyped for single nucleotide polymorphisms (SNPs) previously shown to be risk factors for the development and progression of AMD. Results Around the leading edge of the GA lesions we observed hypertrophic RPE cells with cytoplasm filled with granules fluorescent both in the far-red and green-red channels; abundant microglia and macrophage; deposition of complement factor H (CFH) in Bruch's membrane (BM) and increased membrane attack complex (MAC) on RPE cells. Conclusions Fluorescence imaging of cryosections of RPE cells around the leading edge of the GA lesions suggest that IRAF-SLO visualizes mostly melanin-related compounds. In addition, medium-size GA atrophy displayed the most significant changes in inflammation markers.
Collapse
|
17
|
Zhao J, Kim HJ, Ueda K, Zhang K, Montenegro D, Dunaief JL, Sparrow JR. A vicious cycle of bisretinoid formation and oxidation relevant to recessive Stargardt disease. J Biol Chem 2021; 296:100259. [PMID: 33837742 PMCID: PMC7948646 DOI: 10.1016/j.jbc.2021.100259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
The ability of iron to transfer electrons enables the contribution of this metal to a variety of cellular activities even as the redox properties of iron are also responsible for the generation of hydroxyl radicals (•OH), the most destructive of the reactive oxygen species. We previously showed that iron can promote the oxidation of bisretinoid by generating highly reactive hydroxyl radical (•OH). Now we report that preservation of iron regulation in the retina is not sufficient to prevent iron-induced bisretinoid oxidative degradation when blood iron levels are elevated in liver-specific hepcidin knockout mice. We obtained evidence for the perpetuation of Fenton reactions in the presence of the bisretinoid A2E and visible light. On the other hand, iron chelation by deferiprone was not associated with changes in postbleaching recovery of 11-cis-retinal or dark-adapted ERG b-wave amplitudes indicating that the activity of Rpe65, a rate-determining visual cycle protein that carries an iron-binding domain, is not affected. Notably, iron levels were elevated in the neural retina and retinal pigment epithelial (RPE) cells of Abca4−/− mice. Consistent with higher iron content, ferritin-L immunostaining was elevated in RPE of a patient diagnosed with ABCA4-associated disease and in RPE and photoreceptor cells of Abca4−/− mice. In neural retina of the mutant mice, reduced Tfrc mRNA was also an indicator of retinal iron overload. Thus iron chelation may defend retina when bisretinoid toxicity is implicated in disease processes.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Keiko Ueda
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Kevin Zhang
- Department of Ophthalmology, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Diego Montenegro
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
18
|
Abstract
PURPOSE To characterize functional and structural changes in hydroxychloroquine (HCQ) retinal toxicity after drug cessation. METHODS Twenty-two patients (91% female; mean age 58.7 ± 11.4 years; mean duration of HCQ treatment 161.1 ± 90 months; mean dose 5.9 ± 1.9 mg/kg) with detected HCQ retinopathy were monitored for 6 months to 82 months after HCQ cessation with multimodal imaging including spectral domain optical coherence tomography and fundus autofluorescence imaging at 488 nm (standard) and 787 nm (near-infrared autofluorescence). Tests of visual function including visual acuity, Humphrey visual field testing, and multifocal electroretinography (mfERG) were performed. Study eyes were categorized into four separate severity stages by qualitative grading of spectral domain optical coherence tomography macular scans taken at the time of HCQ cessation. Changes in outcome measures between drug cessation and last follow-up visit were computed and compared between eyes of different severity stages. RESULTS Study eyes (n = 44) were categorized based on optical coherence tomography criteria into: Stage 1 (subtle changes confined to parafoveal region; n = 14), Stage 2 (clear localized changes in parafovea; n = 17), Stage 3 (extensive parafoveal changes; n = 7), and Stage 4 (foveal involvement, n = 6). Visual acuity measurements across follow-up were stable in Stage 1 and Stage 2 eyes but decreased significantly in Stage 3 and 4 eyes. Humphrey visual field measures were also stable in stages 1 and 2 but deteriorated in Stage 3 eyes. mfERG testing demonstrated significant improvement in the R1/R2 ratio after HCQ cessation in Stage 1 eyes (mean change = -0.86 ± 0.79, P = 0.03) but did not change significantly in eyes of higher stages. Decreases in macular thickness in ≥1 of 9 Early Treatment Diabetic Retinopathy Study subfields on spectral domain optical coherence tomography were found in eyes of all stages, with Stage 2 eyes demonstrating thinning in most subfields (eight of nine subfields). In eyes with a measurable central foveal ellipsoid zone band island (9 of 17 Stage 2 eyes and 7 of 7 Stage 3 eyes), progressive decrease in the foveal ellipsoid zone band length was observed in 6 of 9 (67%) Stage 2 eyes and 6 of 7 (86%) Stage 3 eyes. Changes indicative of progressing retinopathy were detected in 17% of Stage 1 eyes, 46% of Stage 2 eyes, and 43% of Stage 3 eyes on standard fundus autofluorescence imaging, and in 17% of Stage 1 eyes, 38% of Stage 2 eyes, and 14% of Stage 3 eyes on near-infrared autofluorescence imaging. CONCLUSION Eyes with detected HCQ retinopathy do not demonstrate general stability in retinal structure and function after HCQ cessation but instead demonstrate a range of changes during follow-up whose magnitudes correlate with retinopathy severity at the time of cessation. After cessation, eyes with only subtle and localized retinopathy were mostly stable and may show some functional improvement, whereas more severely affected eyes continued to progress. These findings provide evidence that early detection and prompt cessation in HCQ retinopathy may be needed to arrest retinopathy progression and to optimize long-term outcomes.
Collapse
|
19
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
20
|
Lima de Carvalho JR, Kim HJ, Ueda K, Zhao J, Owji AP, Yang T, Tsang SH, Sparrow JR. Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice. J Biol Chem 2020; 295:6767-6780. [PMID: 32188692 PMCID: PMC7212638 DOI: 10.1074/jbc.ra120.012695] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency.
Collapse
Affiliation(s)
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Keiko Ueda
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Jin Zhao
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Aaron P Owji
- Department of Pharmacology, Columbia University Irving Medical Center, New York, New York 10032
| | - Tingting Yang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032 .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
21
|
Paavo M, Carvalho JRL, Lee W, Sengillo JD, Tsang SH, Sparrow JR. Patterns and Intensities of Near-Infrared and Short-Wavelength Fundus Autofluorescence in Choroideremia Probands and Carriers. Invest Ophthalmol Vis Sci 2020; 60:3752-3761. [PMID: 31499530 PMCID: PMC6735265 DOI: 10.1167/iovs.19-27366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose To ascertain cellular constituents within islands of preserved retina in choroideremia (CHM) by multimodal imaging. Methods CHM probands (16) and female carriers (9) of CHM were studied. Near-infrared autofluorescence (NIR-AF; 787-nm excitation; emission, >830 nm), short-wavelength autofluorescence (SW-AF; 488-nm excitation, 500- to 680-nm emission), and spectral-domain optical coherence tomography (SD-OCT) images were acquired with a confocal scanning laser ophthalmoscope. SW-AF intensities were measured by quantitative fundus autofluorescence (qAF), and NIR-AF intensity profiles were analyzed. Retinal thicknesses and visual acuity were measured. Results In 19 of 31 eyes of affected males, islands of preserved NIR-AF signal were also visible as fluorescence signal in SW-AF images. Notable in 12 eyes were areas of speckled SW-AF that was hypoautofluorescent in the NIR-AF image. Islands of preserved NIR-AF and SW-AF signal were often associated with the presence of visible but thinned outer nuclear layer and discontinuous interdigitation zone, ellipsoid zone, and external limiting membrane. NIR-AF profiles revealed that even in areas of preserved retina, the NIR-AF signal from retinal pigment epithelium (RPE) melanin is greatly reduced. qAF was reduced overall. The fundus of carriers was characterized by a mosaicism in which patches of reduced NIR-AF colocalized with reduced SW-AF. Conclusions In CHM-affected males, the presence of RPE was indicated by an NIR-AF signal and the absence of hypertransmission of OCT signal into the choroid. RPE preservation was associated with better visual acuity. In carriers, patches of reduced SW-AF colocalized with decreased NIR-AF and qAF was severely reduced.
Collapse
Affiliation(s)
- Maarjaliis Paavo
- Department of Ophthalmology Columbia University Medical Center, New York, New York, United States.,Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| | - Jose R L Carvalho
- Department of Ophthalmology Columbia University Medical Center, New York, New York, United States.,Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares, Hospital das Clinicas de Pernambuco, Federal University of Pernambuco, Recife, Brazil.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Winston Lee
- Department of Ophthalmology Columbia University Medical Center, New York, New York, United States
| | - Jesse D Sengillo
- Department of Ophthalmology Columbia University Medical Center, New York, New York, United States.,Department of Internal Medicine, Reading Hospital of Tower Health, West Reading, Pennsylvania, United States
| | - Stephen H Tsang
- Department of Ophthalmology Columbia University Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Janet R Sparrow
- Department of Ophthalmology Columbia University Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| |
Collapse
|
22
|
Taubitz T, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U. Age, lipofuscin and melanin oxidation affect fundus near-infrared autofluorescence. EBioMedicine 2019; 48:592-604. [PMID: 31648994 PMCID: PMC6838394 DOI: 10.1016/j.ebiom.2019.09.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background Fundus autofluorescence is a non-invasive imaging technique in ophthalmology. Conventionally, short-wavelength autofluorescence (SW-AF) is used for detection of lipofuscin, a byproduct of the visual cycle which accumulates with age or disease in the retinal pigment epithelium (RPE). Furthermore, near-infrared autofluorescence (NIR-AF) is used as a marker for RPE and choroidal melanin, but contribution of lipofuscin to the NIR-AF signal is unclear. Methods We employed fluorescence microscopy to investigate NIR-AF properties of melanosomes, lipofuscin and melanolipofuscin granules in histologic sections of wildtype and Abca4−/− mouse eyes, the latter having increased lipofuscin, as well as aged human donor eyes. Differentiation between these pigments was verified by analytical electron microscopy. To investigate the influence of oxidative and photic stress we used an in vitro model with isolated ocular melanosomes and an in vivo phototoxicity mouse model. Findings We show that NIR-AF is not an intrinsic property of melanin, but rather increases with age and after photic or oxidative stress in mice and isolated melanosomes. Furthermore, when lipofuscin levels are high, lipofuscin granules also show NIR-AF, as confirmed by correlative fluorescence and electron microscopy in human tissue. However, lipofuscin in albino Abca4−/− mice lacks NIR-AF signals. Interpretation We suggest that NIR-AF is derived from melanin degradation products that accumulate with time in lipofuscin granules. These findings can help to improve the interpretation of patient fundus autofluorescence data. Funding This work was supported by Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft and Chinese Scholarship Council. Major instrumentation used in this work was supported by Deutsche Forschungsgemeinschaft, the European Fund for Regional Development and the state of Baden-Württemberg.
Collapse
Affiliation(s)
- Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany.
| | - Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12/1, 72076 Tübingen, Germany; STZ OcuTox Preclinical Drug Assessment, Hechingen, Germany
| |
Collapse
|
23
|
Lima de Carvalho JR, Paavo M, Chen L, Chiang J, Tsang SH, Sparrow JR. Multimodal Imaging in Best Vitelliform Macular Dystrophy. Invest Ophthalmol Vis Sci 2019; 60:2012-2022. [PMID: 31070670 PMCID: PMC6735800 DOI: 10.1167/iovs.19-26571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose In patients diagnosed with Best vitelliform macular dystrophy (BVMD), quantitative fundus autofluorescence (qAF), near-infrared fundus autofluorescence (NIR-AF), and spectral-domain optical coherence tomography (SD-OCT) were used to elucidate pathogenic mechanisms. Methods Fourteen patients heterozygous for BEST1 mutations were recruited. qAF was analyzed using short-wavelength fundus autofluorescence (SW-AF) images. Mean gray levels (GL) were determined in nonlesion areas (7 to 9° eccentricity) and adjusted by GL measured in an internal fluorescent reference. NIR-AF images (787 nm; sensitivity of 96) were captured and saved in non-normalized mode. Horizontal SD-OCT images also were acquired and BVMD was staged according to the OCT findings. Results In the pre-vitelliform stage, NIR-AF imaging revealed an area of reduced fluorescence, whereas in the vitelliruptive stage, puncta of elevated NIR-AF signal were present. In both SW-AF and NIR-AF images, the vitelliform lesion in the atrophic stage was marked by reduced signal. At all stages of BVMD, nonlesion qAF was within the 95% confidence intervals for healthy eyes. Similarly, the NIR-AF intensity measurements outside the vitelliform lesion were comparable to the healthy control eye. SD-OCT scans revealed a fluid-filled detachment between the ellipsoid zone and the hyperreflectivity band attributable to RPE/Bruch's membrane. Conclusions NIR-AF imaging can identify the pre-vitelliform stage of BVMD. Mutations in BEST1 are not associated with increased levels of SW-AF outside the vitelliform lesion. Elevated SW-AF within the fluid-filled lesion likely reflects the inability of RPE to phagocytose outer segments due to separation of RPE from photoreceptor cells, together with progressive photoreceptor cell impairment.
Collapse
Affiliation(s)
- Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Brazil.,Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Maarjaliis Paavo
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States
| | - Lijuan Chen
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Ophthalmology, People's Hospital of PuTuo District, Shanghai, China
| | - John Chiang
- Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States
| | - Stephen H Tsang
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| |
Collapse
|
24
|
Mucciolo DP, Murro V, Giorgio D, Sodi A, Passerini I, Virgili G, Rizzo S. Near-infrared autofluorescence in young choroideremia patients. Ophthalmic Genet 2019; 40:421-427. [PMID: 31544579 DOI: 10.1080/13816810.2019.1666881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To study near-infrared autofluorescence (NIR-AF) and short- wave autofluorescence (SW-AF) imaging modalities in young patients affected with choroideremia (CHM).Methods: NIR-AF and SW-AF images, Optical coherence tomography (OCT) and color fundus images were acquired from 3 young CHM patients (6 eyes) enrolled at the Regional Reference Center for Hereditary Retinal Degenerations of the Eye Clinic in Florence.Results: We studied 3 young CHM patients (6 eyes). The mean age of the patients was 17,3 years. Using NIR-AF, patient P1 was characterized by speckled hypo-autofluorescent areas at the posterior pole with a preserved central hyper-autofluorescence while patient P2 and P3 were characterized by a preserved NIR-AF signal only at the fovea. Using SW-AF, patient P1 was characterized by a normal macular autofluorescence and by a speckled FAF pattern involved the vascular arcades while patient P2 and P3 showed well-demarcated hypo-autofluorescence areas involving the posterior pole with a preserved macular autofluorescence. The differences between NIR-AF and SW-AF were more pronounced in advanced stages. In correspondence of preserved NIR-AF, the OCT examination showed regular and continuous outer retinal hyperreflective bands. We observed abnormal RPE/Bruch's membrane complex and EZ band externally to the NIR-AF signal area.Conclusions: NIR-AF imaging confirms an early RPE involvement allowing us to identify and to quantify the RPE pigment loss in choroideremia. For this reason, NIR-AF imaging can be useful for monitoring the progression of the disease and to study the effect of future treatments.
Collapse
Affiliation(s)
- Dario Pasquale Mucciolo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Dario Giorgio
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Gianni Virgili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Stanislao Rizzo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 2019; 74:100774. [PMID: 31472235 DOI: 10.1016/j.preteyeres.2019.100774] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Quantitative fundus autofluorescence (qAF) is an approach that is built on a confocal scanning laser platform and used to measure the intensity of the inherent autofluorescence of retina elicited by short-wavelength (488 nm) excitation. Being non-invasive, qAF does not interrupt tissue architecture, thus allowing for structural correlations. The spectral features, cellular origin and topographic distribution of the natural autofluorescence of the fundus indicate that it is emitted from retinaldehyde-adducts that form in photoreceptor cells and accumulate, under most conditions, in retinal pigment epithelial cells. The distributions and intensities of fundus autofluorescence deviate from normal in many retinal disorders and it is widely recognized that these changing patterns can aid in the diagnosis and monitoring of retinal disease. The standardized protocol employed by qAF involves the normalization of fundus grey levels to a fluorescent reference installed in the imaging instrument. Together with corrections for magnification and anterior media absorption, this approach facilitates comparisons with serial images and images acquired within groups of patients. Here we provide a comprehensive summary of the principles and practice of qAF and we highlight recent efforts to elucidate retinal disease processes by combining qAF with multi-modal imaging.
Collapse
|
26
|
Chen L, Lee W, de Carvalho JRL, Chang S, Tsang SH, Allikmets R, Sparrow JR. Multi-platform imaging in ABCA4-Associated Disease. Sci Rep 2019; 9:6436. [PMID: 31015497 PMCID: PMC6478712 DOI: 10.1038/s41598-019-42772-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Fundus autofluorescence (FAF) imaging is crucial to the diagnosis and monitoring of recessive Stargardt disease (STGD1). In a retrospective cohort study of 34 patients, we compared FAF imaging platforms varying in field size (30° and 55°: blue/SW-AF and NIR-AF; 200°: ultrawide-field, UWF-AF), excitation wavelength (488 nm, blue/SW-AF; 532 nm, UWF-AF and 787 nm, NIR-AF) and image processing. Due to reduced absorption of 532 nm and 787 nm light by macular pigment, foveal sparing was more readily demonstrable by green/UWF-AF and NIR-AF imaging. Prominent in green/UWF-AF images is a central zone of relatively elevated AF that is continuous inferonasal with a demarcation line bordering lower AF nasally and higher AF temporally. This zone and border are more visible in STGD1 than in healthy eyes and more visible with green/UWF-AF. With the development of AF flecks, inferonasal retina is initially spared. Central atrophic areas were larger in NIR-AF images than in blue/SW-AF and green/UWF-AF images and the presence of a contiguous hyperAF ring varied with imaging modality. Flecks visible as hyperAF foci in blue/SW-AF images were also visible in green/UWF-AF but were often hypoAF in NIR-AF. Since disease in STGD1 often extends beyond the 30° and 55° fields, green/UWF-AF has advantages including for pediatric patients. The imaging platforms examined provided complementary information.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Department of Ophthalmology, People's hospital of Putuo District, Shanghai, China
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Departament of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH) - Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Brazil.,Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Stanley Chang
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, New York, United States. .,Department of Pathology and Cell Biology, Columbia University, New York, New York, United States.
| |
Collapse
|
27
|
Zhao J, Ueda K, Riera M, Kim HJ, Sparrow JR. Bisretinoids mediate light sensitivity resulting in photoreceptor cell degeneration in mice lacking the receptor tyrosine kinase Mer. J Biol Chem 2018; 293:19400-19410. [PMID: 30352873 DOI: 10.1074/jbc.ra118.005949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
The receptor tyrosine kinase Mer is expressed by retinal pigment epithelial (RPE) cells and participates in photoreceptor outer-segment phagocytosis, a process enabling membrane renewal. Mutations in the gene encoding MERTK cause blinding retinitis pigmentosa in humans. Targeted Mertk disruption in mice causes defective RPE-mediated phagocytosis of the outer segments, leading to deposition of autofluorescent debris at the RPE-photoreceptor cell interface, followed by photoreceptor cell degeneration. Here, we show that retinaldehyde adducts (bisretinoid fluorophores) that form in photoreceptor outer segments occupy the unphagocytosed outer-segment debris that accumulates in Mertk -/- mice. Bisretinoids measured by HPLC were elevated in Mertk -/- mice compared with WT animals. Bisretinoids were also more abundant in albino Mertk -/- mice expressing leucine at position 450 of the isomerase RPE65 (Rpe65-Leu450) rather than the variant methionine (Rpe65-450Met) that yields lower bisretinoid levels. In Royal College of Surgeons rats having dysfunctional Mertk, bisretinoids were higher than in WT rats. Intensities of in vivo fundus autofluorescence were higher in Mertk -/- mice than in WT mice and peaked earlier in albino Mertk -/-/Rpe65-Leu450 mice than in albino Mertk -/-/Rpe65-450Met mice. Of note, the rate of photoreceptor cell degeneration was more rapid in albino Mertk -/- mice exposed to higher levels of intraocular light (albino versus pigmented mice) and in mice carrying Rpe65-Leu450 than in Rpe65-450Met mice, revealing a link between bisretinoid accumulation and light-mediated acceleration of photoreceptor cell degeneration. In conclusion, the light sensitivity of photoreceptor cell degeneration arising from Mertk deficiency is consistent with the known phototoxicity of bisretinoids.
Collapse
Affiliation(s)
- Jin Zhao
- From the Departments of Ophthalmology and
| | - Keiko Ueda
- From the Departments of Ophthalmology and
| | | | | | - Janet R Sparrow
- From the Departments of Ophthalmology and .,Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|