1
|
Julliard WA, Myo YPA, Perelas A, Jackson PD, Thatcher TH, Sime PJ. Specialized pro-resolving mediators as modulators of immune responses. Semin Immunol 2022; 59:101605. [PMID: 35660338 PMCID: PMC9962762 DOI: 10.1016/j.smim.2022.101605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Walker A Julliard
- Department of Surgery, Virginia Commonwealth University, Richmond VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond VA, USA
| | - Apostolos Perelas
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Peter D. Jackson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Thomas H. Thatcher
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Perez-Hernandez J, Chiurchiù V, Perruche S, You S. Regulation of T-Cell Immune Responses by Pro-Resolving Lipid Mediators. Front Immunol 2021; 12:768133. [PMID: 34868025 PMCID: PMC8635229 DOI: 10.3389/fimmu.2021.768133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Both the initiation and the resolution of inflammatory responses are governed by the sequential activation, migration, and control/suppression of immune cells at the site of injury. Bioactive lipids play a major role in the fine-tuning of this dynamic process in a timely manner. During inflammation and its resolution, polymorphonuclear cells (PMNs) and macrophages switch from producing pro-inflammatory prostaglandins and leukotrienes to specialized pro-resolving lipid mediators (SPMs), namely, lipoxins, resolvins, protectins, and maresins, which are operative at the local level to limit further inflammation and tissue injury and restore homeostasis. Accumulating evidences expand now the role and actions of these lipid mediators from innate to adaptive immunity. In particular, SPMs have been shown to contribute to the control of chronic inflammation, and alterations in their production and/or function have been associated with the persistence of several pathological conditions, including autoimmunity, in human and experimental models. In this review, we focus on the impact of pro-resolving lipids on T cells through their ability to modulate T-cell responses. In particular, the effects of the different families of SPMs to restrain effector T-cell functions while promoting regulatory T cells will be reviewed, along with the underlying mechanisms. Furthermore, the emerging concept of SPMs as new biological markers for disease diagnostic and progression and as putative therapeutic tools to regulate the development and magnitude of inflammatory and autoimmune diseases is discussed.
Collapse
Affiliation(s)
- Javier Perez-Hernandez
- Université de Paris, Institut Cochin, CNRS, Institut National de la Santé et de le Recherche Médicale (INSERM), Paris, France.,Departament of Nutrition and Health, Valencian International University (VIU), Valencia, Spain
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, Rome, Italy.,Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Sylvain Perruche
- Université de Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang (EFS) Bourgogne-Franche Comté (BFC), Unité Mixte de Recherche (UMR)1098 Research on Interaction between Graft, Host and Tumor (RIGHT), Interactions Hôte Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire Integrated Center for REsearch in inflammatory diseASes (InCREASe), Besançon, France.,MED'INN'Pharma, Besançon, France
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, Institut National de la Santé et de le Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
3
|
Cao Q, Li Y, Li Y, Li L. miR-151-5p alleviates corneal allograft rejection by activating PI3K/AKT signaling pathway and balancing Th17/Treg after corneal transplantation via targeting IL-2Rɑ. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1410. [PMID: 34733962 PMCID: PMC8506781 DOI: 10.21037/atm-21-2054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Background Worldwide, corneal transplantation (CT) is the most common type of tissue replacement and the increased rate of corneal graft rejection (CGR) after CT is a critical problem. Corneal endothelium cells (CECs) are often targets of the immune response mediated by graft-attacking effector T cells. However, the molecular mechanism underlying CGR remains poorly understood. Methods The differentially expressed microRNAs (miRNAs) and mRNA of graft-fail corneas were measured by transcriptome sequencing (RNA-Seq). real-time quantitative polymerase chain reaction was used to measure gene expression levels. Western blot and immunofluorescence staining were used to measure protein expression levels. Kaplan-Meier survival curves were constructed to assess corneal graft survival. Hematoxylin and eosin staining was used for histopathological examination. CCK-8 and ELISA staining were used to detect cell viability and inflammatory cytokines levels, respectively. Flow cytometry was used to detect cell apoptosis and the population of Treg and Th17. Transwell migration and wound-healing assays were used to measure cell migration. Results We identified 453 miRNAs and 4,279 mRNAs aberrant expression in the corneas showing CGR. The differentially expressed miR-151-5p and its potential target gene [interleukin 2 receptor subunit alpha (IL-2Rɑ)] were selected from the RNA-Seq microarrays. The levels of miR-151-5p and IL-2Rɑ were respectively downregulated and upregulated in the CGR. The luciferase activity assay suggested that IL-2Rɑ is a target of miR-151-5p in 293 T cells. In addition, the miR-151-5p inhibitor, si-IL-2Rɑ, and oe-IL-2Rɑ transfection tests in CECs further confirmed that miR-151-5p downregulation and IL-2Rɑ overexpression promoted apoptosis of CECs and inhibited CEC migration, tight junction-related protein ZO-1 and Claudin-5 expression, and PI3K/AKT signaling pathway activity; however, downregulation of IL-2Rɑ abolished the inhibitor effect of miR-151-5p. Similarly, upregulation of miR-151-5p alleviated CGR via activation of the PI3K/AKT signaling pathway and balancing of Th17/Treg, and upregulation of IL-2Rɑ abolished the alleviating effect of miR-151-5p. Conclusions Upregulation of miR-151-5p alleviated CGR by activating the PI3K/AKT signaling pathway and balancing Th17/Treg via targeting of IL-2Rɑ, which contributes to improving the results of CT.
Collapse
Affiliation(s)
- Qian Cao
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yunchuan Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yong Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Lan Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Alvarez C, Abdalla H, Sulliman S, Rojas P, Wu YC, Almarhoumi R, Huang RY, Galindo M, Vernal R, Kantarci A. RvE1 Impacts the Gingival Inflammatory Infiltrate by Inhibiting the T Cell Response in Experimental Periodontitis. Front Immunol 2021; 12:664756. [PMID: 34012448 PMCID: PMC8126725 DOI: 10.3389/fimmu.2021.664756] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease associated with the formation of dysbiotic plaque biofilms and characterized by the progressive destruction of the alveolar bone. The transition from health to disease is characterized by a shift in periodontal immune cell composition, from mostly innate (neutrophils) to adaptive (T lymphocytes) immune responses. Resolvin E1 (RvE1) is a specialized pro-resolution mediator (SPMs), produced in response to inflammation, to enhance its resolution. Previous studies have indicated the therapeutic potential of RvE1 in periodontal disease; however, the impact of RvE1 in the microbial-elicited osteoclastogenic immune response remains uncharacterized in vivo. In the present study, we studied the impact of RvE1 on the gingival inflammatory infiltrate formation during periodontitis in a mouse model. First, we characterized the temporal-dependent changes of the main immune cells infiltrating the gingiva by flow cytometry. Then, we evaluated the impact of early or delayed RvE1 administration on the gingival immune infiltration and cervical lymph nodes composition. We observed a consistent inhibitory outcome on T cells -particularly effector T cells- and a protective effect on regulatory T cells (Tregs). Our data further demonstrated the wide range of actions of RvE1, its preventive role in the establishment of the adaptive immune response during inflammation, and bone protective capacity.
Collapse
Affiliation(s)
| | - Henrique Abdalla
- Forsyth Institute, Cambridge, MA, United States.,Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, Brazil
| | - Salwa Sulliman
- Forsyth Institute, Cambridge, MA, United States.,Department of Clinical Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Paola Rojas
- Forsyth Institute, Cambridge, MA, United States
| | - Yu-Chiao Wu
- Forsyth Institute, Cambridge, MA, United States.,Harvard School of Dental Medicine, Boston, MA, United States
| | - Rawan Almarhoumi
- Forsyth Institute, Cambridge, MA, United States.,Harvard School of Dental Medicine, Boston, MA, United States
| | - Ren-Yeong Huang
- Forsyth Institute, Cambridge, MA, United States.,School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA, United States.,Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Sawada Y, Saito-Sasaki N, Nakamura M. Omega 3 Fatty Acid and Skin Diseases. Front Immunol 2021; 11:623052. [PMID: 33613558 PMCID: PMC7892455 DOI: 10.3389/fimmu.2020.623052] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Humans are exposed to various external environmental factors. Food intake is one of the most influential factors impacting daily lifestyle. Among nutrients obtained from foods, omega-3 polyunsaturated fatty acids (PUFAs) have various beneficial effects on inflammatory diseases. Furthermore, omega-3 PUFA metabolites, including resolvins, are known to demonstrate strong anti-inflammatory effects during allergic and inflammatory diseases; however, little is known regarding the actual impact of these metabolites on skin diseases. In this review, we focused on metabolites that have strong anti-inflammatory actions in various inflammatory diseases, as well as those that present antitumor actions in malignancies, in addition to the actual effect of omega-3 PUFA metabolites on various cells.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Natsuko Saito-Sasaki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
6
|
Zhang J, Xu A, Niu T, Liu C, Zhang Y, Li T, Wang J, Wang Y, Sun D. A unique radioprotective effect of resolvin E1 reduces irradiation-induced damage to the inner ear by inhibiting the inflammatory response. Radiat Oncol 2020; 15:223. [PMID: 32977807 PMCID: PMC7517621 DOI: 10.1186/s13014-020-01662-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background In addition to the direct effects of irradiation, the induced inflammatory response may play an important role in the damage to the inner ear caused by radiotherapy for the treatment of head and neck cancers. Resolvin E1 (RvE1) has anti-inflammatory activity, acting by reducing neutrophil infiltration and proinflammatory cytokine expression. Therefore, in this study we sought to confirm whether the inflammation induced by irradiation was involved in damage to the inner ear after radiotherapy and to investigate the protective effect and underlying mechanism of RvE1 using mouse models. Methods A dose of RvE1 was delivered by intraperitoneal injection to mice before irradiation. Changes in the auditory brainstem response (ABR), relative balance ability, inner ear morphology and the expression levels of inflammatory factors in the inner ear were analyzed on days 7 and 14 after irradiation and compared among different experimental groups. Results Changes of ABR and relative balance ability showed the inner functions of experimental mice presented severe damage after irradiation, but the damage was significantly alleviated after RvE1 pretreatment compared to irradiation alone. Morphological analysis of the inner ear showed severe damage to the cochlea and vestibule after irradiation. In contrast, damage to the cochlea and vestibule was significantly reduced in the RvE1-pretreated group compared to that in the irradiation alone group. Along with these functional and morphological changes, the mRNA expression level of anti-inflammatory factors interleukin-2 was significantly increased, while those of proinflammatory factors interleukin-6 and tumor necrosis factor-α were significantly decreased in the inner ear of mice after RvE1 pretreatment compared to irradiation alone. Conclusions We believe that inflammation induced by irradiation is involved in the damage to the inner ear caused by radiotherapy, and that RvE1 reduces the damage caused by irradiation to the inner ear by regulating the induced inflammatory response.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Otolaryngology & NHC Key Laboratory of Otorhinolaryngology, the Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Anting Xu
- Department of Otolaryngology & NHC Key Laboratory of Otorhinolaryngology, the Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Tingting Niu
- Department of Medical Technology, the Jinan Vocational College of Nursing, Jinan, 250102, Shandong Province, China
| | - Chengcheng Liu
- Department of Otolaryngology & NHC Key Laboratory of Otorhinolaryngology, the Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Yongju Zhang
- Department of Otolaryngology & NHC Key Laboratory of Otorhinolaryngology, the Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Tao Li
- Department of Otolaryngology & NHC Key Laboratory of Otorhinolaryngology, the Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Jihua Wang
- Cancer Center, the Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan, 250033, Shandong Province, China
| | - Yongjing Wang
- Department of Hematology, the Second Hospital of Shandong University, Jinan, 250033, Shandong Province, China
| | - Dianshui Sun
- Cancer Center, the Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan, 250033, Shandong Province, China.
| |
Collapse
|
7
|
Bleul T, Zhuang X, Hildebrand A, Lange C, Böhringer D, Schlunck G, Reinhard T, Lapp T. Different Innate Immune Responses in BALB/c and C57BL/6 Strains following Corneal Transplantation. J Innate Immun 2020; 13:49-59. [PMID: 32906119 DOI: 10.1159/000509716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To investigate immunological differences and the role of CD38+/F4/80 + M1 macrophages in C57BL/6J- and BALB/c-recipient mouse corneal transplantation models. METHODS Allogeneic transplantation was performed crosswise in BALB/c mice and C57BL/6J mice; syngeneic transplantation was performed in both strains. Anterior chamber depth (ACD) was measured before and central corneal thickness (CCT) was measured both before and after transplantation. In vivo graft rejection was monitored using anterior eye segment optical coherence tomography (ASOCT) evaluating the CCT and grading of corneal oedema using a well-established clinical score (CS). Histology of corneal grafts was performed 18 or 21 days after surgery. Immunohistochemistry with anti-F4/80 antibody and anti-CD38 antibody was used for detecting M1 macrophages within the grafts. RESULTS High CS and CCT values after allogeneic transplantation persisted in both BALB/c (n = 18) and C57BL/6J recipients (n = 20). After syngeneic transplantation, CS and CCT values increased in both models in the early phase after surgery due to the surgical trauma. Surprisingly, in the syngeneic C57BL/6J model, high CCT values persisted. Furthermore, anterior synechiae developed in C57BL/6 recipients after both syngeneic and allogeneic transplantation, whereas BALB/c recipients showed almost no synechiae - even though C57/BL6J animals tended to have a deeper anterior chamber (281 ± 11 pixels [mean ± SD]) compared with BALB/c animals of the same age (270 ± 9 pixels [mean ± SD]). Immunohistochemistry revealed numerous CD38+/F4/80 + M1 macrophages in grafts of C57BL/6J recipients following both syngeneic and allogeneic transplantation. However, in BALB/c-recipient mice only sparse M1 macrophages were detectable (CD38 + M1 macrophages relative to all F4/80 + cells: 75 vs. 17% [after allogeneic transplantation] and 66 vs. 17% [after syngeneic transplantation]; p < 0.05). CONCLUSIONS Allogeneic corneal transplants are rejected in BALB/c as well as C57BL/6J mice, but tissue alterations with anterior synechiae are more pronounced in C57BL/6J recipients. Following syngeneic transplantation, C57BL/6J-recipient animals show a persistent graft swelling with increased numbers of CD38+/F4/80 + M1 macrophages in grafted tissue, in contrast to the common model using BALB/c-recipient mice. Our data strongly suggest that strain-dependent differences convey different innate immune responses in BALB/c and C57BL/6J strains. Accordingly, in murine keratoplasty experiments, the mouse line of both donor and recipient animals must be carefully considered. C57BL/6J-recipient mice might be particularly suited to study corneal graft rejection in a clinical setting considered "high risk."
Collapse
Affiliation(s)
- Tim Bleul
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Xinyu Zhuang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Antonia Hildebrand
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,
| |
Collapse
|
8
|
Fan NW, Dohlman TH, Foulsham W, McSoley M, Singh RB, Chen Y, Dana R. The role of Th17 immunity in chronic ocular surface disorders. Ocul Surf 2020; 19:157-168. [PMID: 32470612 DOI: 10.1016/j.jtos.2020.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022]
Abstract
Th17 cells have been implicated in the pathogenesis of numerous inflammatory and autoimmune conditions. At the ocular surface, Th17 cells have been identified as key effector cells in chronic ocular surface disease. Evidence from murine studies indicates that following differentiation and expansion, Th17 cells migrate from the lymphoid tissues to the eye, where they release inflammatory cytokines including, but not limited to, their hallmark cytokine IL-17A. As the acute phase subsides, a population of long-lived memory Th17 cells persist, which predispose hosts both to chronic inflammation and severe exacerbations of disease; of great interest is the small subset of Th17/1 cells that secrete both IL-17A and IFN-γ in acute-on-chronic disease exacerbation. Over the past decade, substantial progress has been made in deciphering how Th17 cells interact with the immune and neuroimmune pathways that mediate chronic ocular surface disease. Here, we review (i) the evidence for Th17 immunity in chronic ocular surface disease, (ii) regulatory mechanisms that constrain the Th17 immune response, and (iii) novel therapeutic strategies targeting Th17 cells.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Thomas H Dohlman
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Matthew McSoley
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Zhang Y, Zhu Z, Li H, Zhu M, Peng X, Xin A, Qu R, He W, Fu J, Sun X. Resolvin E1 in Follicular Fluid Acts as a Potential Biomarker and Improves Oocyte Developmental Competence by Optimizing Cumulus Cells. Front Endocrinol (Lausanne) 2020; 11:210. [PMID: 32373069 PMCID: PMC7176900 DOI: 10.3389/fendo.2020.00210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolic profile of follicular fluid (FF) has been investigated to look for biomarkers for oocyte quality. Resolvin E1 (RvE1), a potent pro-resolving mediator, was reported to have protective action in cell function. The study aimed to examine the predictive value of RvE1 for oocyte quality and to explore the cellular mechanism of RvE1 in improving oocyte competence. Metabolic profiles of 80 FF samples showed a higher level of RvE1 in group A (blastocysts scored ≥ B3BC and B3CB according to Gardner's blastocyst scoring system, N = 36) than that of group B (blastocysts scored < B3BC and B3CB, N = 44, P = 0.0018). The receiver operating characteristic (ROC) curve analysis showed that RvE1 level in FF below 8.96 pg/ml (AUC:0.75; 95%CI: 0.64-0.86; P = 0.00012) could predict poor oocyte quality with specificity of 97.22%, suggesting RvE1 as a potential biomarker to exclude inferior oocytes. Besides, the level of RvE1 was found to be significantly lower in FF than in serum (57.49 to 17.62 pg/ml; P=.0037) and was gradually accumulated in the culture medium of cumulus cells (CCs) during cell culture, which indicated that RvE1 came from both blood exudates and local secretion. The in vitro experiment revealed thecellular mechanism of RvE1 in improvingoocyte qualityby decreasing the cumulus cellapoptotic rate and increasing cell viability and proliferation. It is the first time thatthe role of RvE1 in reproduction is explored. In conclusion, RvE1 is valuable as a potential exclusive biomarker for oocyte selection andplays a role in improving oocyte quality.
Collapse
Affiliation(s)
- Yijing Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine Related Diseases of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhongyi Zhu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine Related Diseases of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - He Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xiandong Peng
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
| | - Aijie Xin
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
| | - Ronggui Qu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
| | - Wen He
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine Related Diseases of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Fu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
- *Correspondence: Jing Fu
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai JIAI Genetics & IVF Institute, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine Related Diseases of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Xiaoxi Sun
| |
Collapse
|