1
|
Lunding BS, Bassi MR, Christensen JP, Thomsen AR, Sørensen TL, Vorum H, Honoré B, Nissen MH, Steffensen MA. Systemic infection in aged mice causes upregulation of crystallin alpha A in the RPE/choroid. Exp Eye Res 2024; 245:109984. [PMID: 38945517 DOI: 10.1016/j.exer.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Aging changes the responsiveness of our immune defense, and this decline in immune reactivity plays an important role in the increased susceptibility to infections that marks progressing age. Aging is also the most pronounced risk factor for development of age-related macular degeneration (AMD), a disease that is characterized by dysfunctional retinal pigment epithelial (RPE) cells and loss of central vision. We have previously shown that acute systemic viral infection has a large impact on the retina in young mice, leading to upregulation of chemokines in the RPE/choroid (RPE/c) and influx of CD8 T cells in the neuroretina. In this study, we sought to investigate the impact of systemic infection on the RPE/c in aged mice to evaluate whether infection in old age could play a role in the pathogenesis of AMD. We found that systemic infection in mice led to upregulation of genes from the crystallin family in the RPE/c from aged mice, but not in the RPE/c from young mice. Crystallin alpha A (CRYAA) was the most upregulated gene, and increased amounts of CRYAA protein were also detected in the aged RPE/c. Increased CRYAA gene and protein expression has previously been found in drusen and choroid from AMD patients, and this protein has also been linked to neovascularization. Since both drusen and neovascularization are important hallmarks of advanced AMD, it is interesting to speculate if upregulation of crystallins in response to infection in old age could be relevant for the pathogenesis of AMD.
Collapse
Affiliation(s)
| | | | | | | | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark; Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Denmark; Department of Ophthalmology, Aalborg University Hospital, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | | |
Collapse
|
2
|
Nielsen MK, Subhi Y, Falk M, Singh A, Sørensen TL, Nissen MH, Faber C. Complement factor H Y402H polymorphism results in diminishing CD4 + T cells and increasing C-reactive protein in plasma. Sci Rep 2023; 13:19414. [PMID: 37940659 PMCID: PMC10632322 DOI: 10.1038/s41598-023-46827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023] Open
Abstract
Age-related macular degeneration (AMD) is a common cause of visual loss among the elderly. Genetic variants in the gene encoding complement factor H (CFH) have been identified as an AMD susceptibility gene, however, the mechanistic link is debated. Here, we investigated the link between the CFH Y402H genotype and low-grade inflammation. We recruited 153 healthy individuals, 84 participants with dry stages of AMD, and 148 participants with neovascular AMD. All participants were subjected to detailed retinal examination, and interview regarding comorbidities and lifestyle. Blood samples were analyzed for level of C-Reactive Protein (CRP), white blood cell differential count, and stained with fluorescent antibodies to differentiate CD4+ and CD8+ T cells. CFH Y402H genotyping was performed using an allele-specific polymerase chain reaction genotyping assay. Splenocytes from young and aged wild type and Cfh null mutant C57BL/6J mice were examined for CD4+ and CD8+ T cells. Healthy individuals with the CFH Y402H at-risk polymorphism HH had higher levels of CRP and lower proportions of CD4+ T cells compared to persons with the YH or YY polymorphism (P = 0.037, Chi-square). Healthy individuals with the HH polymorphism displayed lower proportions of CD4+ T cells with ageing (P < 0.01, one-way ANOVA), whereas both young and aged Cfh null mutant mice displayed lower proportions of CD4+ T cells (P < 0.001 and P < 0.05; unpaired t test). Participants with dry AMD and the HH polymorphism had similarly lower proportions of CD4+ T cells (P = 0.024, one-way ANOVA), but no difference in CRP-levels. In the neovascular stage of AMD, there was no difference in proportion of CD4+ cells or CRP levels according to genotype. The risk-associated CFH genotype is associated with an age-related decrease in proportion of CD4+ T cells and increased levels of CRP in healthy individuals. This indicates that decreased complement regulation results in extensive changes in innate and adaptive immune compartments that precede development of AMD.
Collapse
Affiliation(s)
- Marie Krogh Nielsen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Yousif Subhi
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Falk
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Amardeep Singh
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torben Lykke Sørensen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Carsten Faber
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Zhang Y, Zhu W, Wang J, Zuo Y. Identification of biomarkers associated with immune scores in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1228843. [PMID: 37867507 PMCID: PMC10585271 DOI: 10.3389/fendo.2023.1228843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Background Diabetic retinopathy (DR) causes irreversible visual impairment in diabetes mellitus (DM) patients. Immunity played a crucial role in DR. Nevertheless, the triggering mechanism of DR was not yet thorough enough. Herein, we aim to identify the immune-associated genes as biomarkers associated with immune scores that can distinguish early DR from DM without DR. Methods In this study, total RNA of peripheral blood mononuclear cell (PBMC) samples from 15 non-proliferative DR patients and 15 DM patients without DR were collected and the transcriptome sequencing data were extracted. Firstly, the target genes were obtained by intersecting the differentially expressed genes (DEGs), which were screened by "limma", and the module genes (related to immune scores), which were screened by "WGCNA". In order to screen for the crucial genes, three machine learning algorithms were implemented, and a receiver operating characteristic (ROC) curve was used to obtain the diagnostic genes. Moreover, the gene set enrichment analysis (GSEA) was performed to understand the function of diagnostic genes, and analysis of the proportions of immune cells and their association with diagnostic genes was performed to analyze the pathogenesis of DR. Furthermore, the regulatory network of TF-mRNA-miRNA was built to reveal the possible regulation of diagnostic genes. Finally, the quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the mRNA level of diagnostic genes. Results A total of three immune-associated diagnostic genes, namely, FAM209B, POM121L1P, and PTGES, were obtained, and their expression was increased in PBMC samples of DR, and qRT-PCR results confirmed these results. Moreover, the functions of these genes were associated with immune response. The expression of POM121L1P and PTGES was significantly negatively associated with naive B cells, and the expression of FAM209B was significantly negatively associated with immature dendritic cells. Moreover, ESR1 could regulate both FAM209B and PTGES. Conclusion This study identified three immune-associated diagnostic genes, FAM209B, POM121L1P, and PTGES, as biomarkers associated with immune scores in DR for the first time. This finding might proffer a novel perspective of the triggering mechanism of DR, and help to understand the role of immune-associated genes in the molecular mechanism of DR more deeply.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weidong Zhu
- Department of Spinal Surgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, China
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zuo
- Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, China
| |
Collapse
|
4
|
Paskeviciute E, Chen M, Xu H, Honoré B, Vorum H, Sørensen TL, Christensen JP, Thomsen AR, Nissen MH, Steffensen MA. Systemic virus infection results in CD8 T cell recruitment to the retina in the absence of local virus infection. Front Immunol 2023; 14:1221511. [PMID: 37662932 PMCID: PMC10471971 DOI: 10.3389/fimmu.2023.1221511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
During recent years, evidence has emerged that immune privileged sites such as the CNS and the retina may be more integrated in the systemic response to infection than was previously believed. In line with this, it was recently shown that a systemic acute virus infection leads to infiltration of CD8 T cells in the brains of immunocompetent mice. In this study, we extend these findings to the neurological tissue of the eye, namely the retina. We show that an acute systemic virus infection in mice leads to a transient CD8 T cell infiltration in the retina that is not directed by virus infection inside the retina. CD8 T cells were found throughout the retinal tissue, and had a high expression of CXCR6 and CXCR3, as also reported for tissue residing CD8 T cells in the lung and liver. We also show that the pigment epithelium lining the retina expresses CXCL16 (the ligand for CXCR6) similar to epithelial cells of the lung. Thus, our results suggest that the retina undergoes immune surveillance during a systemic infection, and that this surveillance appears to be directed by mechanisms similar to those described for non-privileged tissues.
Collapse
Affiliation(s)
- Egle Paskeviciute
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University of Belfast, Belfast, Ireland
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University of Belfast, Belfast, Ireland
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Complement activation by RPE cells preexposed to TNFα and IFNγ. Exp Eye Res 2022; 218:108982. [DOI: 10.1016/j.exer.2022.108982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023]
|
6
|
Wan W, Zhu W, Wu Y, Long Y, Liu H, Wan W, Wan G, Yu J. Grape Seed Proanthocyanidin Extract Moderated Retinal Pigment Epithelium Cellular Senescence Through NAMPT/SIRT1/NLRP3 Pathway. J Inflamm Res 2021; 14:3129-3143. [PMID: 34285539 PMCID: PMC8286255 DOI: 10.2147/jir.s306456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Retinal pigment epithelium (RPE) cellular senescence is an important process in degenerative retinal disorders. Grape seed proanthocyanidin extract (GSPE) alleviates senescence-related degenerative disorders; however, the potential effects of GSPE intake on RPE cellular senescence through regulating NAMPT/SIRT1/NLRP3 pathway remain unclear. Methods The effects of GSPE on NAMPT expression and NAD+ contents were detected with Western blot and assay kit in both in-vivo and in-vitro AMD models. Senescence-related biomarkers, including p16, p21 expressions and β-gal staining, were conducted in different groups. The protective effects of GSPE treatment on the mitochondrial homeostasis and barrier function of RPE cells were detected using mtDNA lesions analyses, JC-1 staining, ZO1 staining and trans-epithelial cell resistance (TEER) detection. The expression of senescence-associated secretory phenotype (SASP) in different groups would be conducted with qPCR. To demonstrate the potential effects of NAMPT/SIRT1/NLRP3 pathway after GSPE treatment, the protein levels of relevant key regulators after applications of NAMPT inhibitor, Fk866, and SIRT1 inhibitor, EX-527. Results GSPE significantly improves the NAMPT expression and NAD+ content in aging mice, and thus alleviates the RPE cellular senescence. In advanced in-vitro studies, GSPE significantly up-regulated NAMPT content and thus relieved H2O2 induced NAD+ depression through analyzing the NAD+ contents in different groups. In advanced analyses, it was reported that GSPE could alleviate mitochondrial permeability, mtDNA damage, ZO1 expression and SASP levels in aging RPE cells. Thus, GSPE treatment significantly decreased senescence-related protein p16 and p21, as well as SASP levels in in-vitro aging model, and it was demonstrated that GSPE could illustrate a significant anti-aging effect. The Western blot data in GSPE treatment of aging RPE cells demonstrated that GSPE could significantly improve NAMPT and SIRT1 levels, and thus depressed NLRP3 expression. Conclusion This study indicated that GSPE alleviated RPE cellular senescence through NAMPT/SIRT1/NLRP3 pathway. This study highlighted the potential effects of GSPE on degenerative retinopathy through the crosstalk of NAD+ metabolism, SIRT1 function and NLRP3 activation.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, People's Republic of China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.,Mois Biotech Company, Shanghai, People's Republic of China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hongzhuo Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Weiwei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Terheyden L, Roider J, Klettner A. Basolateral activation with TLR agonists induces polarized cytokine release and reduces barrier function in RPE in vitro. Graefes Arch Clin Exp Ophthalmol 2021; 259:413-424. [PMID: 32949301 PMCID: PMC7843481 DOI: 10.1007/s00417-020-04930-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Systemic inflammation may be of importance in the development of AMD. RPE cells can recognize danger signals with toll-like receptors (TLR) and may react in a pro-inflammatory manner. In this study, we evaluated the basal and apical secretions of TNFα, IL-6, and IL-1β in primary RPE cells and RPE/choroid explant cells under basolateral stimulation of TLR2, 3, and 4; the effects on barrier function; and their influence on neuronal cell viability. METHODS RPE/choroid tissue explants were prepared from porcine eyes and cultivated in modified Ussing chambers; primary porcine RPE cells on transwell plates. Cells were basally stimulated with agonists Pam2CSK4 (Pam; TLR2), polyinosinic/polycytidylic acid (Poly I:C; TLR3), and lipopolysaccharide (LPS; TLR4) for 24 h. Supernatants were evaluated with ELISA for cytokines TNFα, IL-6, and IL-1β. Apical supernatants were applied to SHSY-5Y cells, and cell viability was evaluated in MTT assay. Barrier function was tested by measuring transepithelial electrical resistance (TER) and occludin immunostaining. RESULTS None of the tested TLR agonists was toxic on RPE cells after 24 h of exposure. Unstimulated RPE cells secreted hardly any cytokines. Pam induced IL-6, IL-1ß, and TNFα on the basal and apical sides at all concentrations tested. Poly I:C induced IL-6 and TNFα primarily at the basal side at lower but on both sides at higher concentrations. LPS induced IL-6, IL-1ß, and TNFα apically and basally at all concentrations tested. In the RPE/choroid, a strong difference between apical and basal secretions could be found. IL-6 was constitutively secreted basally, but not apically, but was induced by all agonists on both sides. IL-1ß and TNFα alpha were strongly induced on the basal side by all agonists. TER was reduced by all agonists, with Pam and LPS being effective in all concentrations tested. Occludin expression was unaltered, but the distribution was influenced by the agonists, with a less distinct localization at the cell borders after treatment. None of the agonists or supernatants of treated RPE and RPE/choroid organ cultures exerted any effect on viability of SHSY-5Y cells. CONCLUSIONS Danger signals activating TLRs can induce polarized cytokine expression and contribute to the loss of barrier function in the RPE.
Collapse
Affiliation(s)
- Laura Terheyden
- grid.9764.c0000 0001 2153 9986University Medical Center, Department of Ophthalmology, University of Kiel, Arnold-Heller-Str. 3, Haus B2, 24105 Kiel, Germany
| | - Johann Roider
- grid.9764.c0000 0001 2153 9986University Medical Center, Department of Ophthalmology, University of Kiel, Arnold-Heller-Str. 3, Haus B2, 24105 Kiel, Germany
| | - Alexa Klettner
- grid.9764.c0000 0001 2153 9986University Medical Center, Department of Ophthalmology, University of Kiel, Arnold-Heller-Str. 3, Haus B2, 24105 Kiel, Germany
| |
Collapse
|
8
|
Lew DS, Mazzoni F, Finnemann SC. Microglia Inhibition Delays Retinal Degeneration Due to MerTK Phagocytosis Receptor Deficiency. Front Immunol 2020; 11:1463. [PMID: 32765507 PMCID: PMC7381113 DOI: 10.3389/fimmu.2020.01463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Retinitis Pigmentosa (RP) is a group of inherited retinal diseases characterized by progressive loss of rod followed by cone photoreceptors. An especially early onset form of RP with blindness in teenage years is caused by mutations in mertk, the gene encoding the clearance phagocytosis receptor Mer tyrosine kinase (MerTK). The cause for blindness in mutant MerTK-associated RP (mutMerTK-RP) is the failure of retinal pigment epithelial cells in diurnal phagocytosis of spent photoreceptor outer segment debris. However, the early onset and very fast progression of degeneration in mutMerTK-RP remains unexplained. Here, we explored the role of microglia in the Royal College of Surgeons (RCS) rat model of mutMerTK-RP. We found elevated levels of inflammatory cytokines and CD68 microglia activation marker, and more ionized calcium-binding adapter molecule 1 (Iba-1) positive microglia in RCS retina when compared to wild-type retina as early as postnatal day 14 (P14). Strikingly, renewal of photoreceptor outer segments in P14 wild-type rat retina is still immature with low levels of RPE phagocytosis implying that at this early age lack of this process in RCS rats is unlikely to distress photoreceptors. Although the total number of Iba-1 positive retinal microglia remains constant from P14 to P30, we observed increasing numbers of microglia in the outer retina from P20 implying migration to the outer retina before onset of photoreceptor cell death at ~P25. Iba-1 and CD68 levels also increase in the retina during this time period suggesting microglia activation. To determine whether microglia affect the degenerative process, we suppressed retinal microglia in vivo using tamoxifen or a combination of tamoxifen and liposomal clodronate. Treatments partly prevented elevation of Iba-1 and CD68 and relocalization of microglia. Moreover, treatments led to partial but significant retention of photoreceptor viability and photoreceptor function. We conclude that loss of the phagocytosis receptor MerTK causes microglia activation and relocalization in the retina before lack of RPE phagocytosis causes overt retinal degeneration, and that microglia activities accelerate loss of photoreceptors in mutMerTK-RP. These results suggest that therapies targeting microglia may delay onset and slow the progression of this blinding disease.
Collapse
Affiliation(s)
- Deborah S Lew
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY, United States
| | - Francesca Mazzoni
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY, United States
| | - Silvia C Finnemann
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, NY, United States
| |
Collapse
|
9
|
Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS One 2020; 15:e0228895. [PMID: 32032388 PMCID: PMC7006930 DOI: 10.1371/journal.pone.0228895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alpha-1-antitrypsin is a protein involved in avoidance of different processes that are seen in diabetic retinopathy pathogenesis. These processes include apoptosis, extracellular matrix remodeling and damage of vessel walls and capillaries. Furthermore, because of its anti-inflammatory effects, alpha-1-antitrypsin has been proposed as a possible therapeutic approach for diabetic retinopathy. Our group tested alpha-1-antitrypsin in a type 1 diabetes mouse model and observed a reduction of inflammation and retinal neurodegeneration. Thus, shedding light on the mechanism of action of alpha-1-antitrypsin at molecular level may explain how it works in the diabetic retinopathy context and show its potential for use in other retinal diseases. METHODS In this work, we evaluated alpha-1-antitrypsin in an ARPE-19 human cell line exposed to high glucose. We explored the expression of different mediators on signaling pathways related to pro-inflammatory cytokines production, glucose metabolism, epithelial-mesenchymal transition and other proteins involved in the normal function of retinal pigment epithelium by RT-qPCR and Western Blot. RESULTS We obtained different expression patterns for evaluated mediators altered with high glucose exposure and corrected with the use of alpha-1-antitrypsin. CONCLUSIONS The expression profile obtained in vitro for the evaluated proteins and mRNA allowed us to explain our previous results obtained on mouse models and to hypothesize how alpha-1-antitrypsin hinder diabetic retinopathy progression on a complex network between different signaling pathways. GENERAL SIGNIFICANCE This network helps to understand the way alpha-1-antitrypsin works in diabetic retinopathy and its scope of action.
Collapse
|