1
|
Berkowitz BA, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky RH, Bustos AH, Childers KL, Murphy GG, Stangis K, Roberts R. Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice. Acta Neuropathol Commun 2024; 12:85. [PMID: 38822433 PMCID: PMC11140992 DOI: 10.1186/s40478-024-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mura Abdul-Nabi
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, MD, USA
| | | | | | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| |
Collapse
|
2
|
Berkowitz BA, Paruchuri A, Stanek J, Podolsky RH, Childers KL, Roberts R. Acetazolamide Challenge Changes Outer Retina Bioenergy-Linked and Anatomical OCT Biomarkers Depending on Mouse Strain. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38488413 PMCID: PMC10946704 DOI: 10.1167/iovs.65.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that optical coherence tomography (OCT) bioenergy-linked and anatomical biomarkers are responsive to an acetazolamide (ACZ) provocation. Methods C57BL/6J mice (B6J, a strain with relatively inefficient mitochondria) and 129S6/ev mice (S6, a strain with relatively efficient mitochondria) were given a single IP injection of ACZ (carbonic anhydrase inhibitor) or vehicle. In each mouse, the Mitochondrial Configuration within Photoreceptors based on the profile shape Aspect Ratio (MCP/AR) index was determined from the hyper-reflective band immediately posterior to the external limiting membrane (ELM). In addition, we tested for ACZ-induced acidification by measuring contraction of the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness; the hyporeflective band (HB) signal intensity at the photoreceptor tips was also examined. Finally, the nuclear layer thickness was measured. Results In response to ACZ, MCP/AR was greater-than-vehicle in B6J mice and lower-than-vehicle in S6 mice. ACZ-treated B6J and S6 mice both showed ELM-RPE contraction compared to vehicle-treated mice, consistent with dehydration in response to subretinal space acidification. The HB intensity at the photoreceptor tips and the outer nuclear layer thickness (B6J and S6), as well as the inner nuclear layer thickness of B6J mice, were all lower than vehicle following ACZ. Conclusions Photoreceptor respiratory efficacy can be evaluated in vivo based on distinct rod mitochondria responses to subretinal space acidification measured with OCT biomarkers and an ACZ challenge, supporting and extending our previous findings measured with light-dark conditions.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H. Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
3
|
Evangelho KDS, Cifuentes-González C, Rojas-Carabali W, Vivero-Arciniegas CD, Cañas-Arboleda M, Salguero G, Ramírez-Santana C, de-la-Torre A. Early detection of optic nerve head changes using optical coherence tomography after using mesenchymal stromal cells as intravitreal therapy in rabbit models of ocular hypertension. Vet World 2024; 17:500-508. [PMID: 38595669 PMCID: PMC11000475 DOI: 10.14202/vetworld.2024.500-508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Stem cell therapy is considered a promising treatment for several neurodegenerative diseases. However, there are very few studies on the use of this therapy in glaucoma models. By detecting the changes produced by glaucoma early, cell therapy could help prevent the events that lead to blindness. In this study, early changes in the optic nerve head (ONH) as detected by optical coherence tomography (OCT) after the application of human Wharton's jelly-derived mesenchymal stromal cells (hWJ-MSCs) in an experimental model of ocular hypertension (OH) were evaluated. Materials and Methods Fifteen New Zealand rabbits were randomly divided into the following three groups: G1: OH, G2: hWJ-MSCs, and G3: OH + hWJ-MSCs. An OH model was constructed, and the intraocular pressure (IOP) was measured regularly. At week 7, 105/100 μL hWJ-MSCs were intravitreally injected. Retinography and OCT were used to evaluate structural changes in ONH. Results IOP increased significantly in G1 and G3 from week 3 onward. Retinography revealed more significant optic nerve changes, that is, papillary asymmetry suggestive of optic nerve excavation, vascular alterations, and irregular hypopigmentation peripheral to the optic disk margin, in G1 compared with G3. OH locates the hWJ-MSCs solution in the vitreous in front of the optic nerve. OCT revealed retinal nerve fiber layer (RNFL) reduction in all groups, reduced optic cup volume in G2 and G3 between weeks 1 and 9, and significant ganglion cell layer thickness reduction in G1 and a slight increase in G3. Conclusion Intravitreal hWJ-MSCs injection produced changes in optic cup volume, which were detected early on by OCT; however, RNFL could not be restored in this OH model.
Collapse
Affiliation(s)
- Karine dos Santos Evangelho
- Doctoral Program in Biomedical and Biological Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Cifuentes-González
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - William Rojas-Carabali
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Mariana Cañas-Arboleda
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud-IDCBIS, Bogotá, Colombia
| | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud-IDCBIS, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
4
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Waseem R. Multiple Bioenergy-Linked OCT Biomarkers Suggest Greater-Than-Normal Rod Mitochondria Activity Early in Experimental Alzheimer's Disease. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36867132 PMCID: PMC9988708 DOI: 10.1167/iovs.64.3.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose In Alzheimer's disease, central brain neurons show evidence for early hyperactivity. It is unclear if this occurs in the retina, another disease target. Here, we tested for imaging biomarker manifestation of prodromal hyperactivity in rod mitochondria in vivo in experimental Alzheimer's disease. Methods Light- and dark-adapted 4-month-old 5xFAD and wild-type (WT) mice, both on a C57BL/6J background, were studied with optical coherence tomography (OCT). We measured the reflectivity profile shape of the inner segment ellipsoid zone (EZ) as a proxy for mitochondria distribution. Two additional indices responsive to mitochondria activity were also measured: the thickness of the external limiting membrane-retinal pigment epithelium (ELM-RPE) region and the signal magnitude of a hyporeflective band (HB) between photoreceptor tips and apical RPE. Retinal laminar thickness and visual performance were evaluated. Results In response to low energy demand (light), WT mice showed the expected elongation in EZ reflectivity profile shape, relatively thicker ELM-RPE, and greater HB signal. Under high energy demand (dark), the EZ reflectivity profile shape was rounder, the ELM-RPE was thinner, and the HB was reduced. These OCT biomarker patterns for light-adapted 5xFAD mice did not match those of light-adapted WT mice but rather that of dark-adapted WT mice. Dark-adapted 5xFAD and WT mice showed the same biomarker pattern. The 5xFAD mice exhibited modest nuclear layer thinning and lower-than-normal contrast sensitivity. Conclusions Results from three OCT bioenergy biomarkers raise the novel possibility of early rod hyperactivity in vivo in a common Alzheimer's disease model.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen L Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
5
|
Zwolska J, Balicki I, Balicka A. Morphological and Morphometric Analysis of Canine Choroidal Layers Using Spectral Domain Optical Coherence Tomography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3121. [PMID: 36833819 PMCID: PMC9963096 DOI: 10.3390/ijerph20043121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The choroid, a multifunctional tissue, has been the focus of research interest for many scientists. Its morphology and morphometry facilitate an understanding of pathological processes within both the choroid and retina. This study aimed to determine the choroidal layer thicknesses in healthy, mixed-breed mesocephalic dogs, both male (M) and female (F), using spectral domain optical coherence tomography (SD-OCT) with radial, cross-sectional, and linear scans. The dogs were divided into two groups based on age: middle-aged (MA) and senior (SN). Thicknesses of choroidal layers, namely RPE-Bruch's membrane-choriocapillaris complex (RPE-BmCc) with tapetum lucidum in the tapetal fundus, the medium-sized vessel layer (MSVL), and the large vessel layer with lamina suprachoroidea (LVLS), as well as whole choroidal thickness (WCT), were measured manually using the caliper function integrated into the OCT software. Measurement was performed dorsally and ventrally at a distance of 5000-6000 μm temporally and nasally at a distance of 4000-7000 μm to the optic disc on enhanced depth scans. The measurements were conducted temporally and nasally in both the tapetal (temporal tapetal: TempT, nasal tapetal: NasT) and nontapetal (temporal nontapetal: TempNT, nasal nontapetal: NasNT) fundus. The ratio of the MSVL thickness to the LVLS thickness for each region was calculated. In all examined dogs, the RPE-BmCc in the dorsal (D) region and MSVL in the Tt region were significantly thicker than those in the other regions. The MSVL was thinner in the ventral (V) region than in the D, TempT, TempNT and NasT regions. The MSVL was significantly thinner in the NasNT region than in the D region. LVLS thickness and WCT were significantly greater in the D and TempT regions than those in the other regions and significantly lesser in the V region than those in the other regions. The MSVL-to-LVLS thickness ratio did not differ between the age groups. Our results reveal that the choroidal thickness profile does not depend on age. Our findings can be used to document the emergence and development of various choroidal diseases in dogs in the future.
Collapse
Affiliation(s)
- Jowita Zwolska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Ireneusz Balicki
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Agnieszka Balicka
- Small Animals Clinic, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| |
Collapse
|
6
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Katz R, Waseem R, Robbings BM, Hass DT, Hurley JB, Sweet IR, Goodman C, Qian H, Alvisio B, Heaps S. Transducin-Deficient Rod Photoreceptors Evaluated With Optical Coherence Tomography and Oxygen Consumption Rate Energy Biomarkers. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36576748 PMCID: PMC9804021 DOI: 10.1167/iovs.63.13.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To test the hypothesis that rod energy biomarkers in light and dark are similar in mice without functional rod transducin (Gnat1rd17). Methods Gnat1rd17 and wildtype (WT) mice were studied in canonically low energy demand (light) and high energy demand (dark) conditions. We measured rod inner segment ellipsoid zone (ISez) profile shape, external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness, and magnitude of a hyporeflective band (HB) intensity dip located between photoreceptor tips and apical RPE; antioxidants were given in a subset of mice. Oxygen consumption rate (OCR) and visual performance indexes were also measured. Results The lower energy demand expected in light-adapted wildtype retinas was associated with an elongated ISez, thicker ELM-RPE, and higher HB magnitude, and lower OCR compared to high energy demand conditions in the dark. Gnat1rd17 mice showed a wildtype-like ISez profile shape at 20 minutes of light that became rounder at 60 minutes; at both times, ELM-RPE was smaller than wildtype values, and the HB magnitude was unmeasurable. OCR was higher than in the dark. Light-adapted Gnat1rd17 mice biomarkers were unaffected by anti-oxidants. Gnat1rd17 mice showed modest outer nuclear layer thinning and no reduction in visual performance indexes. Conclusions Light-stimulated changes in all biomarkers in WT mice are consistent with the established light-induced decrease in net energy demand. In contrast, biomarker changes in Gnat1rd17 mice raise the possibility that light increases net energy demand in the absence of rod phototransduction.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Brian M Robbings
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Daniel T Hass
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Ian R Sweet
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Alvisio
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sam Heaps
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
7
|
Berkowitz BA, Podolsky RH, Childers KL, Burgoyne T, De Rossi G, Qian H, Roberts R, Katz R, Waseem R, Goodman C. Functional Changes Within the Rod Inner Segment Ellipsoid in Wildtype Mice: An Optical Coherence Tomography and Electron Microscopy Study. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35816042 PMCID: PMC9284466 DOI: 10.1167/iovs.63.8.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To test the hypothesis that changing energy needs alter mitochondria distribution within the rod inner segment ellipsoid. Methods In mice with relatively smaller (C57BL/6J [B6J]) or greater (129S6/ev [S6]) retina mitochondria maximum reserve capacity, the profile shape of the rod inner segment ellipsoid zone (ISez) was measured with optical coherence tomography (OCT) under higher (dark) or lower (light) energy demand conditions. ISez profile shape was characterized using an unbiased ellipse descriptor (minor/major aspect ratio). Other bioenergy indexes evaluated include the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness and the magnitude of the signal intensity of a hyporeflective band located between the photoreceptor tips and apical RPE. The spatial distribution of rod ellipsoid mitochondria were also examined with electron microscopy. Results In B6J mice, darkness produced a greater ISez aspect ratio, thinner ELM-RPE, and a smaller hyporeflective band intensity than in light. In S6 mice, dark and light ISez aspect ratio values were not different and were greater than in light-adapted B6J mice; dark-adapted S6 mice showed smaller ELM-RPE thinning versus light, and negligible hyporeflective band intensity in the light. In B6J mice, mitochondria number in light increased in the distal inner segment ellipsoid and decreased proximally. In S6 mice, mitochondria number in the inner segment ellipsoid were not different between light and dark, and were greater than in B6J mice. Conclusions These data raise the possibility that rod mitochondria activity in mice can be noninvasively evaluated based on the ISez profile shape, a new OCT index that complements OCT energy biomarkers measured outside of the ISez region.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, Unites States
| | - Tom Burgoyne
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Giulia De Rossi
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, Unites States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
8
|
Mischi E, Soukup P, Harman CD, Oikawa K, Kowalska ME, Hartnack S, McLellan GJ, Komáromy AM, Pot SA. Outer retinal thickness and visibility of the choriocapillaris in four distinct retinal regions imaged with spectral domain optical coherence tomography in dogs and cats. Vet Ophthalmol 2022; 25 Suppl 1:122-135. [PMID: 35611616 PMCID: PMC9246961 DOI: 10.1111/vop.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the outer retinal band thickness and choriocapillaris (CC) visibility in four distinct retinal regions in dogs and cats imaged with spectral domain optical coherence tomography (SD-OCT). To attempt delineation of a fovea-like region in canine and feline SD-OCT scans, aided by the identification of outer retinal thickness differences between retinal regions. METHODS Spectralis® HRA + OCT SD-OCT scans from healthy, anesthetized dogs (n = 10) and cats (n = 12) were analyzed. Scanlines on which the CC was identifiable were counted and CC visibility was scored. Outer nuclear layer (ONL) thickness and the distances from external limiting membrane (ELM) to retinal pigment epithelium/Bruch's membrane complex (RPE/BM) and ELM to CC were measured in the area centralis (AC), a visually identified fovea-like region, and in regions superior and inferior to the optic nerve head (ONH). Measurements were analyzed using a multilevel regression. RESULTS The CC was visible in over 90% of scanlines from dogs and cats. The ONL was consistently thinnest in the fovea-like region. The outer retina (ELM-RPE and ELM-CC) was thickest within the AC compared with superior and inferior to the ONH in dogs and cats (p < .001 for all comparisons). CONCLUSIONS The CC appears a valid, albeit less than ideal outer retinal boundary marker in tapetal species. The AC can be objectively differentiated from the surrounding retina on SD-OCT images of dogs and cats; a fovea-like region was identified in dogs and its presence was suggested in cats. These findings allow targeted imaging and image evaluation of these regions of retinal specialization.
Collapse
Affiliation(s)
- Elisa Mischi
- Ophthalmology Section, Equine Department, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Petr Soukup
- Ophthalmology Section, Equine Department, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Christine D. Harman
- Department of Small Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | - Kazuya Oikawa
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Malwina E. Kowalska
- Ophthalmology Section, Equine Department, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
- Section of Epidemiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Gillian J. McLellan
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | - Simon A. Pot
- Ophthalmology Section, Equine Department, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
9
|
Occelli LM, Pirie CG, Petersen‐Jones SM. Non‐invasive optical coherence tomography angiography: A comparison with fluorescein and indocyanine green angiography in normal adult dogs and cats. Vet Ophthalmol 2022; 25 Suppl 1:164-178. [DOI: 10.1111/vop.12973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Laurence M. Occelli
- Department of Small Animal Clinical Sciences College of Veterinary Medicine Michigan State University East Lansing Michigan USA
| | - Chris G. Pirie
- Department of Small Animal Clinical Sciences College of Veterinary Medicine Michigan State University East Lansing Michigan USA
| | - Simon M. Petersen‐Jones
- Department of Small Animal Clinical Sciences College of Veterinary Medicine Michigan State University East Lansing Michigan USA
| |
Collapse
|
10
|
Sardar Pasha SPB, Shetty T, Lambert-Cheatham NA, Sishtla K, Mathew D, Muniyandi A, Patwari N, Bhatwadekar AD, Corson TW. Retinal Phenotyping of Ferrochelatase Mutant Mice Reveals Protoporphyrin Accumulation and Reduced Neovascular Response. Invest Ophthalmol Vis Sci 2021; 62:36. [PMID: 33620374 PMCID: PMC7910629 DOI: 10.1167/iovs.62.2.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Heme depletion, through inhibition of ferrochelatase (FECH), blocks retinal and choroidal neovascularization. Both pharmacologic FECH inhibition and a partial loss-of-function Fech mutation (Fechm1Pas) are associated with decreased neovascularization. However, the ocular physiology of Fechm1Pas mice under basal conditions has not been characterized. Here, we aimed to characterize the retinal phenotype of Fechm1Pas mice. Methods We monitored retinal vasculature at postnatal day 17, 2 months, and 6 months in Fechm1Pas homozygotes, heterozygotes, and their wild-type littermates. We characterized Fech substrate protoporphyrin (PPIX) fluorescence in the eye (excitation = 403 nm, emission = 628 nm), retinal function by electroretinogram, visual acuity by optomotor reflex, and retinal morphology by optical coherence tomography and histology. We stained vasculature using isolectin B4 and fluorescein angiography. We determined endothelial sprouting of retinal and choroidal tissue ex vivo and bioenergetics of retinal punches using a Seahorse flux analyzer. Results Fundi, retinal vasculature, venous width, and arterial tortuosity showed no aberrations. However, VEGF-induced retinal and choroidal sprouting was decreased in Fechm1Pas mutants. Homozygous Fechm1Pas mice had pronounced buildup of PPIX in the posterior eye with no damage to visual function, bioenergetics, and integrity of retinal layers. Conclusions Even with a buildup of PPIX in the retinal vessels in Fechm1Pas homozygotes, the vasculature remains normal. Notably, stimulus-induced ex vivo angiogenesis was decreased in Fechm1Pas mutants, consistent with reduced pathologic angiogenesis seen previously in neovascular animal models. Our findings indicate that Fechm1Pas mice are a useful model for studying the effects of heme deficiency on neovascularization due to Fech blockade.
Collapse
Affiliation(s)
- S P B Sardar Pasha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Trupti Shetty
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Nathan A Lambert-Cheatham
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Deepa Mathew
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Anbukkarasi Muniyandi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Neeta Patwari
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ashay D Bhatwadekar
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
11
|
Lejoyeux R, Benillouche J, Ong J, Errera MH, Rossi EA, Singh SR, Dansingani KK, da Silva S, Sinha D, Sahel JA, Freund KB, Sadda SR, Lutty GA, Chhablani J. Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res 2021; 87:100997. [PMID: 34293477 DOI: 10.1016/j.preteyeres.2021.100997] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
The choriocapillaris is the innermost structure of the choroid that directly nourishes the retinal pigment epithelium and photoreceptors. This article provides an overview of its hemovasculogenesis development to achieve its final architecture as a lobular vasculature, and also summarizes the current histological and molecular knowledge about choriocapillaris and its dysfunction. After describing the existing state-of-the-art tools to image the choriocapillaris, we report the findings in the choriocapillaris encountered in the most frequent retinochoroidal diseases including vascular diseases, inflammatory diseases, myopia, pachychoroid disease spectrum disorders, and glaucoma. The final section focuses on the development of imaging technology to optimize visualization of the choriocapillaris as well as current treatments of retinochoroidal disorders that specifically target the choriocapillaris. We conclude the article with pertinent unanswered questions and future directions in research for the choriocapillaris.
Collapse
Affiliation(s)
| | | | - Joshua Ong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213, USA
| | - Sumit R Singh
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Susana da Silva
- Department of Ophthalmology and Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Rothschild Foundation, 75019, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - K Bailey Freund
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, NY, USA; Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, New York University of Medicine, New York, NY, USA; Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA
| | - SriniVas R Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, CA, 90033, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Zhang S, Kwapong WR, Yang T, Liu P, Tuo Q, Cheng Y, Li X, Liu M, Lei P, Wu B. Choriocapillaris Changes Are Correlated With Disease Duration and MoCA Score in Early-Onset Dementia. Front Aging Neurosci 2021; 13:656750. [PMID: 33927609 PMCID: PMC8076507 DOI: 10.3389/fnagi.2021.656750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose: Imaging of the choroid may detect the microvascular changes associated with early-onset dementia (EOD) and may represent an indicator for detection of the disease. We aimed to analyze the in vivo choriocapillaris (CC) flow density in EOD patients using optical coherence tomography angiography (OCTA) and evaluate the association with its clinical measures. Methods: This cross-sectional study used the OCTA to image and analyze the choriocapillaris (CC) of 25 EOD patients and 20 healthy controls. Choriocapillaris flow density in the 3 mm area and 6 mm area was measured by an inbuilt algorithm in the OCT tool. Brain volume using magnetic resonance imaging and cognitive assessment was done and recorded. Results: Significantly reduced capillary flow density of the choriocapillaris was seen in EOD patients when compared to healthy controls in the 3.0 mm (P = 0.001) and 6.0 mm (P < 0.001) area respectively. Montreal Cognitive Assessment (MoCA) scores in EOD patients positively correlated with choriocapillaris flow density in the 3 mm area (Rho = 0.466, P = 0.021). Disease duration of EOD patients also negatively correlated with choriocapillaris density in the 3 mm area (Rho = -0.497, P = 0.008). Discussion: Our report suggests that choriocapillaris damage may be a potential indicator of early-onset dementia. Microvascular impairment may be involved in the early phase of dementia without aging playing a role in its impairment. Clinical Trial Registration: www.ClinicalTrials.gov, ChiCTR2000041386.
Collapse
Affiliation(s)
- Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Tang Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency, West China Hospital, Sichuan University, Chengdu, China
| | - Qingzhang Tuo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yajun Cheng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Short B. Selected Aspects of Ocular Toxicity Studies With a Focus on High-Quality Pathology Reports: A Pathology/Toxicology Consultant's Perspective. Toxicol Pathol 2020; 49:673-699. [PMID: 32815474 DOI: 10.1177/0192623320946712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ocular toxicity studies are the bedrock of nonclinical ocular drug and drug-device development, and there has been an evolution in experience, technologies, and challenges to address that ensures safe clinical trials and marketing authorization. The expectations of a well-designed ocular toxicity study and the generation of a coherent, integrative ocular toxicology report and subreports are high, and this article provides a pathology/toxicology consultant's perspective on achieving that goal. The first objective is to cover selected aspects of study designs for ocular toxicity studies including considerations for contract research organization selection, minipig species selection, unilateral versus bilateral dosing, and in-life parameters based on fit-for-purpose study objectives. The main objective is a focus on a high-quality ocular pathology report that includes ocular histology procedures to meet regulatory expectations and a report narrative and tables that correlate microscopic findings with key ophthalmic findings and presents a clear interpretation of test article-, vehicle-, and procedure-related ocular and extraocular findings with identification of adversity and a pathology peer review. The last objective covers considerations for a high-quality ophthalmology report, which in concert with a high-quality pathology report, will pave the way for a best quality toxicology report for an ocular toxicity study.
Collapse
Affiliation(s)
- Brian Short
- Brian Short Consulting, LLC, Laguna Beach, CA, USA
| |
Collapse
|
14
|
Pollreisz A, Neschi M, Sloan KR, Pircher M, Mittermueller T, Dacey DM, Schmidt-Erfurth U, Curcio CA. Atlas of Human Retinal Pigment Epithelium Organelles Significant for Clinical Imaging. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 32648890 PMCID: PMC7425708 DOI: 10.1167/iovs.61.8.13] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To quantify organelles impacting imaging in the cell body and intact apical processes of human retinal pigment epithelium (RPE), including melanosomes, lipofuscin-melanolipofuscin (LM), mitochondria, and nuclei. Methods A normal perifovea of a 21-year-old white male was preserved after rapid organ recovery. An aligned image stack was generated using serial block-face scanning electron microscopy and was annotated by expert readers (TrakEM, ImageJ). Acquired measures included cell body and nuclear volume (n = 17); organelle count in apical processes (n = 17) and cell bodies (n = 8); distance of cell body organelles along a normalized apical-basal axis (n = 8); and dimensions of organelle-bounding boxes in apical processes in selected subsamples of cell bodies and apical processes. Results In 2661 sections through 17 cells, apical processes contained 65 ± 24 melanosomes in mononucleate (n = 15) and 131 ± 28 in binucleate cells (n = 2). Cell bodies contained 681 ± 153 LM and 734 ± 170 mitochondria. LM was excluded from the basal quartile, and mitochondria from the apical quartile. Lengths of melanosomes, LM, and mitochondria, respectively were 2305 ± 528, 1320 ± 574, and 1195 ± 294 nm. The ratio of cell body to nucleus volume was 4.6 ± 0.4. LM and mitochondria covered 75% and 63%, respectively, of the retinal imaging plane. Conclusions Among RPE signal sources for optical coherence tomography, LM and mitochondria are the most numerous reflective cell body organelles. These and our published data show that most melanosomes are in apical processes. Overlapping LM and previously mitochondria cushions may support multiple reflective bands in cell bodies. This atlas of subcellular reflectivity sources can inform development of advanced optical coherence tomography technologies.
Collapse
Affiliation(s)
- Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Martina Neschi
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Dennis M. Dacey
- Department of Biologic Structure, University of Washington, Seattle, Washington, United States
| | | | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
15
|
Lavaud A, Soukup P, Martin L, Hartnack S, Pot S. Spectral Domain Optical Coherence Tomography in Awake Rabbits Allows Identification of the Visual Streak, a Comparison with Histology. Transl Vis Sci Technol 2020; 9:13. [PMID: 32821485 PMCID: PMC7401941 DOI: 10.1167/tvst.9.5.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose To evaluate visual streak (VS) identification on spectral-domain optical coherence tomography (SD-OCT) scans in awake rabbits. To report thickness measurements in the VS and adjacent retina on OCT B-scans and histologic sections and to assess inter-method bias, precision and repeatability between OCT and histology. Methods Vertical SD-OCT B-scan images through the optic nerve head and VS were acquired from 16 awake, ophthalmologically healthy experimental rabbits. Scans were acquired from both eyes, which were later enucleated and processed for light microscopy. Inner retina, inner nuclear layer, outer nuclear layer, outer retina (OR) and photoreceptor outer segment (PROS) thickness were measured on OCT images and digitalized microscopy slides in- and outside of the VS, and compared using linear mixed effects models. Results Both SD-OCT and histology allowed retinal layer identification and measurement. On OCT, OR and PROS were thickest in the central VS and thinnest outside the VS. Histology mirrored OCT results for central outer retinal layers but shows discrepancies for other layers likely because of postmortem processing artifacts. The method comparison demonstrated better repeatability for OCT measurements compared with histology. Conclusions Increased OR and PROS thickness compared with the adjacent retina allowed identification of the VS on SD-OCT in awake rabbits. OCT allows measurements devoid of processing artifacts in contrast to histology. Translational Relevance SD-OCT is possible in awake rabbits. Easy and reliable identification of the VS may facilitate the positioning and use of rabbits as model species in human macular and generalized retinal disease research.
Collapse
Affiliation(s)
- Arnold Lavaud
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Petr Soukup
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Louise Martin
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simon Pot
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|