1
|
Kellner S, Weinitz S, Farmand G, Kellner U. Near-Infrared Autofluorescence: Early Detection of Retinal Pigment Epithelial Alterations in Inherited Retinal Dystrophies. J Clin Med 2024; 13:6886. [PMID: 39598030 PMCID: PMC11594703 DOI: 10.3390/jcm13226886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique used to examine the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within RPE cells. It serves as a protective antioxidative factor and is involved in the phagocytosis of photoreceptor outer segments. Disorders affecting the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. NIA allows us to detect early alterations in various chorioretinal disorders, frequently before they are ophthalmoscopically visible and often prior to alterations in lipofuscin-associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, the findings for both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders, especially inherited retinal dystrophies (IRDs), indicating that NIA detects earlier alterations compared to FAF. Foveal alterations can be much more easily detected using NIA compared to FAF. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant Best disease, when FAF and OCT are still normal. In other IRDs, a preserved subfoveal NIA intensity is associated with good visual acuity. So far, the current knowledge on NIA in IRD has been presented in multiple separate publications but has not been summarized in an overview. This review presents the current knowledge on NIA in IRD and demonstrates NIA biomarkers.
Collapse
Affiliation(s)
- Simone Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Silke Weinitz
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Ghazaleh Farmand
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
| | - Ulrich Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| |
Collapse
|
2
|
Gómez-Benlloch A, Garrell-Salat X, Cobos E, López E, Esteve-Garcia A, Ruiz S, Vázquez M, Sararols L, Biarnés M. Optical Coherence Tomography in Inherited Macular Dystrophies: A Review. Diagnostics (Basel) 2024; 14:878. [PMID: 38732293 PMCID: PMC11083341 DOI: 10.3390/diagnostics14090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Macular dystrophies (MDs) constitute a collection of hereditary retina disorders leading to notable visual impairment, primarily due to progressive macular atrophy. These conditions are distinguished by bilateral and relatively symmetrical abnormalities in the macula that significantly impair central visual function. Recent strides in fundus imaging, especially optical coherence tomography (OCT), have enhanced our comprehension and diagnostic capabilities for MD. OCT enables the identification of neurosensory retinal disorganization patterns and the extent of damage to retinal pigment epithelium (RPE) and photoreceptor cells in the dystrophies before visible macular pathology appears on fundus examinations. It not only helps us in diagnostic retinal and choroidal pathologies but also guides us in monitoring the progression of, staging of, and response to treatment. In this review, we summarize the key findings on OCT in some of the most common MD.
Collapse
Affiliation(s)
- Alba Gómez-Benlloch
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Xavier Garrell-Salat
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Estefanía Cobos
- Hospital Universitari de Bellvitge, c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Elena López
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Anna Esteve-Garcia
- Clinical Genetics Unit, Laboratori Clinic Territorial Metropolitada Sud, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Sergi Ruiz
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Meritxell Vázquez
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Laura Sararols
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Marc Biarnés
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| |
Collapse
|
3
|
Corradetti G, Verma A, Tojjar J, Almidani L, Oncel D, Emamverdi M, Bradley A, Lindenberg S, Nittala MG, Sadda SR. Retinal Imaging Findings in Inherited Retinal Diseases. J Clin Med 2024; 13:2079. [PMID: 38610844 PMCID: PMC11012835 DOI: 10.3390/jcm13072079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent one of the major causes of progressive and irreversible vision loss in the working-age population. Over the last few decades, advances in retinal imaging have allowed for an improvement in the phenotypic characterization of this group of diseases and have facilitated phenotype-to-genotype correlation studies. As a result, the number of clinical trials targeting IRDs has steadily increased, and commensurate to this, the need for novel reproducible outcome measures and endpoints has grown. This review aims to summarize and describe the clinical presentation, characteristic imaging findings, and imaging endpoint measures that are being used in clinical research on IRDs. For the purpose of this review, IRDs have been divided into four categories: (1) panretinal pigmentary retinopathies affecting rods or cones; (2) macular dystrophies; (3) stationary conditions; (4) hereditary vitreoretinopathies.
Collapse
Affiliation(s)
- Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aditya Verma
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jasaman Tojjar
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Louay Almidani
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deniz Oncel
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60153, USA
| | - Mehdi Emamverdi
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
| | - Alec Bradley
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | | | | | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Parmar UPS, Surico PL, Singh RB, Romano F, Salati C, Spadea L, Musa M, Gagliano C, Mori T, Zeppieri M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:527. [PMID: 38674173 PMCID: PMC11052176 DOI: 10.3390/medicina60040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Artificial intelligence (AI) has emerged as a transformative tool in the field of ophthalmology, revolutionizing disease diagnosis and management. This paper provides a comprehensive overview of AI applications in various retinal diseases, highlighting its potential to enhance screening efficiency, facilitate early diagnosis, and improve patient outcomes. Herein, we elucidate the fundamental concepts of AI, including machine learning (ML) and deep learning (DL), and their application in ophthalmology, underscoring the significance of AI-driven solutions in addressing the complexity and variability of retinal diseases. Furthermore, we delve into the specific applications of AI in retinal diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), Macular Neovascularization, retinopathy of prematurity (ROP), retinal vein occlusion (RVO), hypertensive retinopathy (HR), Retinitis Pigmentosa, Stargardt disease, best vitelliform macular dystrophy, and sickle cell retinopathy. We focus on the current landscape of AI technologies, including various AI models, their performance metrics, and clinical implications. Furthermore, we aim to address challenges and pitfalls associated with the integration of AI in clinical practice, including the "black box phenomenon", biases in data representation, and limitations in comprehensive patient assessment. In conclusion, this review emphasizes the collaborative role of AI alongside healthcare professionals, advocating for a synergistic approach to healthcare delivery. It highlights the importance of leveraging AI to augment, rather than replace, human expertise, thereby maximizing its potential to revolutionize healthcare delivery, mitigate healthcare disparities, and improve patient outcomes in the evolving landscape of medicine.
Collapse
Affiliation(s)
| | - Pier Luigi Surico
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Romano
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
5
|
Bianco L, Arrigo A, Antropoli A, Berni A, Saladino A, Vilela MAP, Mansour AM, Bandello F, Battaglia Parodi M. Multimodal imaging in Best Vitelliform Macular Dystrophy: Literature review and novel insights. Eur J Ophthalmol 2024; 34:39-51. [PMID: 36972471 PMCID: PMC10757402 DOI: 10.1177/11206721231166434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Best Vitelliform Macular Dystrophy (BVMD) is a dominantly inherited retinal disease caused by dominant variants in the BEST1 gene. The original classification of BVMD is based on biomicroscopy and color fundus photography (CFP); however, advancements in retinal imaging provided unique structural, vascular, and functional data and novel insights on disease pathogenesis. Quantitative fundus autofluorescence studies informed us that lipofuscin accumulation, the hallmark of BVMD, is unlikely to be a primary effect of the genetic defect. It could be due to a lack of apposition between photoreceptors and retinal pigment epithelium in the macula with subsequent accumulation of shed outer segments over time. Optical Coherence Tomography (OCT) and adaptive optics imaging revealed that vitelliform lesions are characterized by progressive changes in the cone mosaic corresponding to a thinning of the outer nuclear layer and then disruption of the ellipsoid zone, which are associated with a decreased sensitivity and visual acuity. Therefore, an OCT staging system based on lesion composition, thus reflecting disease evolution, has been recently developed. Lastly, the emerging role of OCT Angiography proved a greater prevalence of macular neovascularization, the majority of which are non-exudative and develop in late disease stages. In conclusion, effective diagnosis, staging, and clinical management of BVMD will likely require a deep understanding of the multimodal imaging features of this disease.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Berni
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuel AP Vilela
- Clinical Surgery, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Ahmad M Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
- Department of Ophthalmology, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
6
|
Iovino C, Ramtohul P, Au A, Romero-Morales V, Sadda S, Freund KB, Sarraf D. Vitelliform maculopathy: Diverse etiologies originating from one common pathway. Surv Ophthalmol 2023; 68:361-379. [PMID: 36720370 DOI: 10.1016/j.survophthal.2023.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Vitelliform lesions (VLs) are associated with a wide array of macular disorders but are the result of one common pathway: retinal pigment epithelium (RPE) impairment and phagocytic dysfunction. VLs are defined by the accumulation of yellowish subretinal material. In the era of multimodal advanced retinal imaging, VLs can be further characterized by subretinal hyperreflectivity with optical coherence tomography and hyperautofluorescence with fundus autofluorescence. VLs can be the result of genetic or acquired retinal diseases. In younger patients, VLs usually occur in the setting of Best disease. Additional genetic causes of VL include pattern dystrophy or adult-onset vitelliform macular dystrophy. In older patients, acquired VLs can be associated with a broad spectrum of etiologies, including tractional, paraneoplastic, toxic, and degenerative disorders. The main cause of visual morbidity in eyes with VLs is the onset of macular atrophy and macular neovascularization. Histopathological studies have provided new insights into the location, nature, and lifecycle of the vitelliform material comprised of melanosomes, lipofuscin, melanolipofuscin, and outer segment debris located between the RPE and photoreceptor layer. Impaired phagocytosis by the RPE cells is the unifying pathway leading to VL development. We discuss and summarize the nature, pathogenesis, multimodal imaging characteristics, etiologies, and natural course of vitelliform maculopathies.
Collapse
Affiliation(s)
- Claudio Iovino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Prithvi Ramtohul
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Adrian Au
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Veronica Romero-Morales
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - SriniVas Sadda
- Doheny Image Reading Center, Doheny Eye Institute, University of California Los Angeles (UCLA) Affiliated, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of New York, New York, NY, USA
| | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA; Greater Los Angeles Veterans Affairs Healthcare Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Microstructural changes of photoreceptor layers detected by ultrahigh-resolution SD-OCT in patients with autosomal recessive bestrophinopathy. Am J Ophthalmol Case Rep 2022; 28:101706. [PMID: 36187441 PMCID: PMC9523351 DOI: 10.1016/j.ajoc.2022.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the changes in the microstructures of the photoreceptors in patients with autosomal recessive bestrophinopathy (ARB) by ultrahigh-resolution spectral-domain optical coherence tomography (UHR-SD-OCT). Methods Five eyes of 4 patients with ARB were studied. Cross-sectional images of the fovea were recorded by the UHR-SD-OCT system with a depth resolution of <2.0 μm. Results The UHR-SD-OCT images revealed changes in the outer retinal structures that were dependent on the severity of the photoreceptor atrophy. There was an increase in the reflectivity and appearance of small hyperreflective dots (HRDs) in the outer segments, followed by an irregularity and decrease in the length of the outer segments, then a disruption of the ellipsoid zone (EZ) band, and appearance of large HRDs corresponding to the segmented ellipsoids. Finally, there was a disappearance of the large HRDs followed by a localized thinning of the outer nuclear layer and appearance of hyperreflective foci above the region of the disrupted EZ. Conclusions UHR-SD-OCT can record images that show detailed changes of the microstructures of the photoreceptors at different stages of ARB. These observations should help in determining the mechanisms involved in retinal pathology and should provide important information on the effectiveness of treatments.
Collapse
|
8
|
Cideciyan AV, Jacobson SG, Swider M, Sumaroka A, Sheplock R, Krishnan AK, Garafalo AV, Guziewicz KE, Aguirre GD, Beltran WA, Heon E. Photoreceptor Function and Structure in Autosomal Dominant Vitelliform Macular Dystrophy Caused by BEST1 Mutations. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36512348 DOI: 10.1167/iovs.63.13.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to evaluate rod and cone function and outer retinal structure within macular lesions, and surrounding extralesional areas of patients with autosomal dominant Best vitelliform macular dystrophy caused by BEST1 mutations. Methods Seventeen patients from seven families were examined with dark- and light-adapted chromatic perimetry and optical coherence tomography. Subsets of patients had long-term follow-up (14-22 years, n = 6) and dark-adaptation kinetics measured (n = 5). Results Within central lesions with large serous retinal detachments, rod sensitivity was severely reduced but visual acuity and cone sensitivity were relatively retained. In surrounding extralesional areas, there was a mild but detectable widening of the subretinal space in some patients and some retinal areas. Available evidence was consistent with subretinal widening causing slower dark-adaptation kinetics. Over long-term follow-up, some eyes showed formation of de novo satellite lesions at retinal locations that years previously demonstrated subretinal widening. A subclinical abnormality consisting of a retina-wide mild thickening of the outer nuclear layer was evident in many patients and thickening increased in the subset of patients with long-term follow-up. Conclusions Outcome measures for future clinical trials should include evaluations of rod sensitivity within central lesions and quantitative measures of outer retinal structure in normal-appearing regions surrounding the lesions.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arun K Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Karina E Guziewicz
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Understanding Ocular Findings and Manifestations of Systemic Lupus Erythematosus: Update Review of the Literature. Int J Mol Sci 2022; 23:ijms232012264. [PMID: 36293119 PMCID: PMC9603180 DOI: 10.3390/ijms232012264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease. Up to one-third of patients suffering from SLE have various ocular manifestations. The ocular findings may represent the initial manifestation of the systemic disease and may lead to severe ocular complications, and even loss of vision. Ocular manifestations are often associated with degree of systemic inflammation, but also can precede the occurrence of systemic symptoms. Early diagnosis and adequate management of patients with SLE are crucial and require cooperation between various specialists. Proper preparation of ophthalmologists can help to differentiate between complication of SLE and other ocular disorders. New therapies for SLE are promising for potential benefits, however, ocular side effects are still unknown.
Collapse
|
10
|
Lee W, Su PY, Zernant J, Nagasaki T, Tsang SH, Allikmets R. Longitudinal Analysis of a Resolving Foveomacular Vitelliform Lesion in ABCA4 Disease. Ophthalmol Retina 2022; 6:847-860. [PMID: 35413457 PMCID: PMC9464664 DOI: 10.1016/j.oret.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe the longitudinal progression and phenotypic association of bilateral foveomacular vitelliform lesions in the setting of ABCA4 disease. DESIGN Case report and cross-sectional cohort study. PARTICIPANTS Nineteen patients with confirmed ABCA4 disease exhibiting an optical gap phenotype. METHODS Multimodal retinal imaging across multiple visits included autofluorescence imaging, spectral-domain OCT (SD-OCT), and OCT angiography. Electro-oculogram (EOG) and full-field electroretinogram testing results were analyzed. Exome sequencing was performed for diagnostic confirmation and the verification of other variations. MAIN OUTCOME MEASURES Light-peak-to-dark-trough ratio (Arden ratio) on EOG; thickness and en face maps of various retinal layers on SD-OCT; area measurements on 488- and 787-nm autofluorescence images; and the presence of variation in vitelliform-associated genes identified using exome sequencing. RESULTS A 25-year-old White man presented with bilateral central vision loss due to foveal lesions consisting of vitelliform fluid. The result of EOG testing was inconsistent with bestrophinopathy (Arden ratio = 1.62), and no generalized rod or cone dysfunction was detected on full-field electroretinogram. Exome sequencing identified the pathogenic variants c.5882G>A (p.(Gly1961Glu)) and c.4139C>T (p.(Pro1380Leu)) in ABCA4 and no other vitelliform-associated genes. Significant thinning and abnormal reflectivity of photoreceptor-attributable layers as well as near-infrared autofluorescence abnormalities were found in lesion-adjacent areas. Complete resorption of the vitelliform fluid occurred after 30 months, after which the optical gap lesions exhibited an enlarged and "cavitated" appearance. Phenotypic screening for additional cases from a large ABCA4 disease database (n = 602) identified 18 additional patients at various stages of optical gap lesion formation, most of whom harbored the c.5882G>A (p.(Gly1961Glu)) variant (P < 0.001), although none had apparent vitelliform fluid. At least 5 of the 18 (31.6%) patients exhibited optical gap lesions with the distinct "cavitated" appearance, whereas the lesions remained unperturbed in the other patients over the course of examination. CONCLUSIONS Foveomacular vitelliform deposition is a mechanistically congruent but rare manifestation of ABCA4 disease. Specifically, this disease phenotype may be clinically associated with the c.5882G>A (p.(Gly1961Glu)) allele and optical gap lesions.
Collapse
Affiliation(s)
- Winston Lee
- Department of Genetics & Development, Columbia University, New York, New York; Department of Ophthalmology, Columbia University, New York, New York
| | - Pei-Yin Su
- Department of Ophthalmology, Columbia University, New York, New York
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York
| | - Stephen H Tsang
- Department of Genetics & Development, Columbia University, New York, New York; Department of Pathology & Cell Biology, Columbia University, New York, New York
| | - Rando Allikmets
- Department of Genetics & Development, Columbia University, New York, New York; Department of Pathology & Cell Biology, Columbia University, New York, New York.
| |
Collapse
|
11
|
Kellner S, Weinitz S, Farmand G, Kellner U. Nahinfrarot-Autofluoreszenz: klinische Anwendung und diagnostische Relevanz. AUGENHEILKUNDE UP2DATE 2022. [DOI: 10.1055/a-1810-1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungDie Nahinfrarot-Autofluoreszenz (NIA) ist ein nicht-invasives Verfahren zur Untersuchung des retinalen Pigmentepithels (RPE) basierend auf der Darstellung des antioxidativen Schutzfaktors
Melanin in den RPE-Zellen. Die NIA verbessert die Früherkennung chorioretinaler Erkrankungen, da bei vielen dieser Erkrankungen mit der NIA Strukturveränderungen des RPE nachweisbar sind,
bevor sich in anderen Untersuchungen Krankheitszeichen erkennen lassen.
Collapse
|
12
|
Kellner S, Weinitz S, Farmand G, Kellner U. [Near-infrared Fundus Autofluorescence: Clinical Application and Diagnostic Relevance]. Klin Monbl Augenheilkd 2022; 239:1059-1076. [PMID: 35609811 DOI: 10.1055/a-1857-1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique for examination of the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within the RPE cells, in one of them it serves as a protective antioxidative factor within the RPE cells and is involved in the phagocytosis of photoreceptor outer segments. Disorders that affect the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. Therefore, NIA allows to detect early alterations in inherited and acquired chorioretinal disorders, frequently prior to ophthalmoscopical visualisation and often prior to alterations in lipofuscin associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, findings between both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders (e.g., age-related macular degeneration, retinitis pigmentosa, ABCA4-gene associated Stargardt disease and cone-rod dystrophy, light damage), indicating that NIA detects earlier alterations compared to FAF. In addition, due to the absence of blue-light filtering which limits foveal visualisation in FAF, foveal alterations can be much better detected using NIA. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant BEST1-associated disease, when FAF and OCT are still normal. In other disorders, a normal subfoveal NIA intensity is associated with good visual acuity. This review summarizes the present knowledge on NIA and demonstrates biomarkers for various chorioretinal disorders.
Collapse
|
13
|
Nowomiejska K, Nasser F, Stingl K, Schimpf‐Linzenbold S, Biskup S, Brzozowska A, Rejdak R, Kohl S, Zrenner E. Disease expression caused by different variants in the BEST1 gene: genotype and phenotype findings in bestrophinopathies. Acta Ophthalmol 2022; 100:e847-e858. [PMID: 34327816 PMCID: PMC9328113 DOI: 10.1111/aos.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Purpose: To analyse the spectrum of clinical features and molecular genetic data in a series of patients carrying likely disease-associated variants in the BEST1 gene. Methods: Retrospective observational analysis of clinical data extracted from the medical records of visual function, multimodal imaging and electrophysiology of 62 eyes of 31 patients. Molecular genetic analysis was performed by means of panel-based NGS or Sanger sequencing. Results: The spectrum of variants in the BEST1 gene comprised 19 different variants and three of which are novel. Fundus photographs and OCT images allowed categorization of 52 eyes as Best vitelliform macular dystrophy (BVMD) with stages 1 to 5 and 10 eyes with autosomal recessive bestrophinopathy (ARB), with more severe phenotype. One patient was shown to be heterozygous for a variant, which has so far been described only in ARB, but this patient had the BVMD phenotype. There was no significant progression of the visual acuity during the follow-up period of 5 years both in BVMD and ARB. The most prevalent pattern of fundus autofluorescence (FAF) in BVMD was ‘patchy’. There were diverse visual field defects in static automated perimetry (SAP) depending on the stage. The Arden ratio was significantly lower in ARB patients and in eyes with stage 5 of BVMD. Conclusions: The genotype does not always predict the phenotype in patients with BVMD and ARB; however, having two mutations in the BEST1 gene causes a more severephenotype. FAFhelped to distinguish ARB from BVMD. Most of the observed eyesdidnotprogressfunctionallyduringthefollow-up.ARBandtheatrophicstageof BVMD as the disease end-stage had the worst visual functions and EOG results.
Collapse
Affiliation(s)
- Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology Medical University of Lublin Lublin Poland
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Fadi Nasser
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Katarina Stingl
- University Eye Hospital Center for Ophthalmology University of Tübingen Tübingen Germany
- Center for Rare Eye Diseases University of Tübingen Tübingen Germany
| | | | | | - Agnieszka Brzozowska
- Department of Mathematics and Medical Biostatistics Medical University of Lublin Lublin Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology Medical University of Lublin Lublin Poland
| | - Susanne Kohl
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
- Werner Reichardt Centre for Integrative Neuroscience University of Tübingen Tübingen Germany
| |
Collapse
|
14
|
Sayman Muslubas I, Arf S, Hocaoglu M, Giray Ersoz M, Karacorlu M. Best disease presenting as subretinal pigment epithelium hyperreflectivite lesion on spectral-domain optical coherence tomography: Multimodal imaging features. Eur J Ophthalmol 2021; 32:2702-2711. [PMID: 34806463 DOI: 10.1177/11206721211055961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To report clinical and multimodal imaging features of Best disease in patients presenting with subretinal pigment epithelium hyperreflective lesions. DESIGN Retrospective study. METHODS Clinical examination findings and multimodal imaging features, including color fundus photography, spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence, fluorescein and indocyanine green angiography (ICGA), and optical coherence tomography angiography (OCTA) images were evaluated retrospectively. RESULTS We assessed 27 eyes of 16 patients with the diagnosis of Best disease. Only patients presenting with serous macular detachment and subretinal pigment epithelium hyperreflective lesion in one or both eyes were included in this study. In 17 of 27 eyes (63%), fibrosis was identified by multimodal imaging techniques. Although there was no sign of active neovascularization on fundus examination or SD-OCT, a vascular network could be identified in 7 eyes (26%) (in 1 eye with OCTA only and in 6 eyes with both OCTA and ICGA). Active neovascularization was seen in 3 eyes (11%). Treatment was recommended for eyes with active neovascularization, and follow-up was scheduled for eyes with quiescent neovascularization and fibrosis. CONCLUSION Eyes with Best disease with subretinal pigment epithelium hyperreflective lesion and serous macular detachment may show fibrosis, quiescent neovascularization, or active neovascularization. Multimodal imaging techniques are very important for differentiation of these lesions.
Collapse
Affiliation(s)
| | - Serra Arf
- 498107Istanbul Retina Institute, Istanbul, Turkey
| | | | | | | |
Collapse
|
15
|
Abdolrahimzadeh S, Ciancimino C, Grassi F, Sordi E, Fragiotta S, Scuderi G. Near-Infrared Reflectance Imaging in Retinal Diseases Affecting Young Patients. J Ophthalmol 2021; 2021:5581851. [PMID: 34373789 PMCID: PMC8349282 DOI: 10.1155/2021/5581851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Near-infrared reflectance (NIR) is a noninvasive, contactless, and rapid in vivo imaging technique for visualizing subretinal alterations in the photoreceptor layer, retinal pigment epithelium, and choroid. The present report describes the application of this imaging method in retinal and choroidal pathologies affecting young patients where scarce cooperation, poor fixation, and intense glare sensation can result in a challenging clinical examination. A literature search of the MEDLINE database was performed using the terms "near-infrared reflectance" and "spectral-domain optical coherence tomography." Articles were selected if they described the diagnostic use of NIR in children or young adults. Of 700 publications, 42 manuscripts published between 2005 and 2020 were inherent to children or young adults and were considered in this narrative literature review. The first disease category is the phakomatoses where NIR is essential in visualizing choroidal alterations recognized as cardinal biomarkers in neurofibromatosis type 1, microvascular retinal alterations, and retinal astrocytic hamartomas. Another diagnostic application is the accurate visualization of crystals of various nature, including the glistening crystals that characterize Bietti crystalline dystrophy. Acute macular neuropathy and paracentral acute middle maculopathy represent a further disease category with young adulthood onset where NIR is not only diagnostic but also essential to monitor disease progression. A further interesting clinical application is to facilitate the detection of laser-induced maculopathy where funduscopic examination can be normal or subnormal. In conclusion, NIR imaging has a noninterchangeable role in diagnosing certain retinal diseases, especially in children and young adults where there is scarce collaboration and a lack of evident clinical findings. Moreover, this technique can reveal unique retinal and choroidal biomarkers highly specific to rare conditions.
Collapse
Affiliation(s)
- Solmaz Abdolrahimzadeh
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Chiara Ciancimino
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Flaminia Grassi
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Edoardo Sordi
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Serena Fragiotta
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| | - Gianluca Scuderi
- Ophthalmology Unit, “Sapienza” University of Rome, NESMOS Department, St. Andrea Hospital, Via di Grottarossa 1035/1039, Rome, Italy
| |
Collapse
|
16
|
Lin Y, Li T, Liu B, Lyu C, Lian Y, Li J, Huang Y, Li H, Wu Q, Jin C, Lu L. Multimodal imaging and genetic analysis of adult-onset best vitelliform macular dystrophy in Chinese patients. Exp Ther Med 2021; 22:1034. [PMID: 34373720 PMCID: PMC8343652 DOI: 10.3892/etm.2021.10466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/16/2021] [Indexed: 01/09/2023] Open
Abstract
Compared to juvenile-onset best vitelliform macular dystrophy (BVMD), adult-onset BVMD is not well characterized and lacks strict diagnostic criteria. The present study aimed to evaluate the clinical and genetic characteristics of four advanced-age Chinese patients with adult-onset BVMD by combining multimodal imaging and genetic analysis. The four patients (all older than 50 years) were diagnosed with adult-onset BVMD at Zhongshan Ophthalmic Center (Guangzhou, China). Comprehensive ophthalmic examinations were performed, including analyses of best-corrected visual acuity, intraocular pressure, slit-lamp examination, fundus photography, optical coherence tomography, fundus fluorescein angiography and electrooculography. Genomic DNA was extracted from leukocytes isolated from peripheral blood obtained from these patients, their family members and 200 unrelated subjects from the same population. A total of 11 exons of the bestrophin-1 (BEST1) gene were amplified using PCR and sequenced. All of the four patients presented with lesions in the macular area. The patients were diagnosed with adult-onset BVMD based on multimodal imaging and genetic analysis. A total of four recurrent mutations, namely c.763C>T (p.Arg255Trp, p.R255W) in exon 7, c.584C>T (p.Ala195Val, p.A195V) in exon 5, c.910_912del GAT (p.304delAsp, p.D304del) in exon 8 and c.310G>C (p.Asp104His, p.D104H) in exon 4 of BEST1, were identified. Sorting intolerant from tolerant predicted that the amino acid substitutions p.R255W, p.A195V and p.D104H in the BEST1 protein were causing the damage. Combining multimodal imaging and genetic analysis was helpful in confirming the diagnosis of patients with adult-onset BVMD. These results maybe valuable for clinical and genetic counseling and for the development of therapeutic interventions for patients with BVMD.
Collapse
Affiliation(s)
- Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Tao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Cancan Lyu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Yu Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jizhu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Haichun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Qingxiu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
17
|
Pole C, Ameri H. Fundus Autofluorescence and Clinical Applications. J Ophthalmic Vis Res 2021; 16:432-461. [PMID: 34394872 PMCID: PMC8358768 DOI: 10.18502/jovr.v16i3.9439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Fundus autofluorescence (FAF) has allowed in vivo mapping of retinal metabolic derangements and structural changes not possible with conventional color imaging. Incident light is absorbed by molecules in the fundus, which are excited and in turn emit photons of specific wavelengths that are captured and processed by a sensor to create a metabolic map of the fundus. Studies on the growing number of FAF platforms has shown each may be suited to certain clinical scenarios. Scanning laser ophthalmoscopes, fundus cameras, and modifications of these each have benefits and drawbacks that must be considered before and after imaging to properly interpret the images. Emerging clinical evidence has demonstrated the usefulness of FAF in diagnosis and management of an increasing number of chorioretinal conditions, such as age-related macular degeneration, central serous chorioretinopathy, retinal drug toxicities, and inherited retinal degenerations such as retinitis pigmentosa and Stargardt disease. This article reviews commercial imaging platforms, imaging techniques, and clinical applications of FAF.
Collapse
Affiliation(s)
- Cameron Pole
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| | - Hossein Ameri
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Deitch I, Ferenchak K, Miller JB. Quantitative autofluorescence: Review of Current Technical Aspects and Applications in Chorioretinal Disease. Semin Ophthalmol 2021; 36:346-350. [PMID: 33818290 DOI: 10.1080/08820538.2021.1908570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: In this review we discuss the broad clinical application of qAF and provide a descriptive summary of the phenotypic findings of different chorioretinal pathologies.Background: Quantitative Fundus autofluorescence (qAF) is a novel developing technology that can aid in diagnosis and longitudinal disease monitoring by measuring and comparing autofluorescence intensities. Fundus autofluorescence (FAF) is a noninvasive imaging method that creates a density map of the fluorophores of the ocular fundus and provides both functional and topographic anatomic information about retinal cells. Fluorophores are molecules that have the ability to temporarily absorb irradiated light, and emit a small amount of light of a different wavelength. Different endogenous fluorophores can be found in the ocular fundus. Changes in accumulation of retinal fluorophores usually indicate retinal pathology and create characteristic patterns of hyper-autofluorescence and hypo-autofluorescence that help establish a diagnosis.Conclusion: qAF allows a safe non-invasive visualization of the retina, enables a standard for AF intensities comparison and aids to the understanding of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Iris Deitch
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| | - Kevin Ferenchak
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| | - John B Miller
- Department of Ophthalmology, Retina Service Mass Eye and Ear Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Muftuoglu IK, Al-Sheikh M, J S, Rasheed MA, Singh SR, Chhablani J. Imaging in inherited retinal disorders. Eur J Ophthalmol 2021; 31:1656-1676. [PMID: 33525895 DOI: 10.1177/1120672121990578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inherited retinal diseases, which results from mutations in over 260 identified genes, affect more than 2 million people globally. The diseases mostly cause severe vision loss in young working population and have severe impact on social economic status of the population. Advances in retinal imaging techniques along with developments in gene identification and cell biology techniques have yielded to a better understanding of the genetic and biochemical mechanisms causing these diseases. Retinal imaging along with through ophthalmological examination is essential to make an accurate diagnosis, to decrease the burden of unneccessary anciliary tests and to select the potential patients that can get benefit from the gene treatment. The purpose of the review is to yield an update on inherited retinal diseases by highlighting microstructural changes in retina and to summarize the retinal changes detected by currently available multimodal imaging techniques.
Collapse
Affiliation(s)
- Ilkay Kilic Muftuoglu
- Department of Ophthalmology, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Mayss Al-Sheikh
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sushma J
- LV Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Sumit Randhir Singh
- Jacobs Retina Center at Shiley Eye Center, University of California, San Diego, La Jolla, CA, USA
| | - Jay Chhablani
- UPMC Eye Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Bonilha VL, Bell BA, DeBenedictis MJ, Hagstrom SA, Fishman GA, Hollyfield JG. Cellular Changes in Retinas From Patients With BEST1 Mutations. Front Cell Dev Biol 2020; 8:573330. [PMID: 33154968 PMCID: PMC7591587 DOI: 10.3389/fcell.2020.573330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022] Open
Abstract
Best disease (BD), also known as vitelliform macular dystrophy, is an inherited disease of the central retina caused by more than 300 pathogenic variants in the BEST1 gene. The phenotype of BD is variable, and there are just a few reports on the histopathology of eyes from donors with BD. Here, we describe the histopathological comparison of donor’s eyes from two patients with BD. Eyes obtained from 85-year-old (donor 1) and 65-year-old (donor 2) donors were fixed within 25 h postmortem. Perifoveal and peripheral retinal regions were processed for histology and immunocytochemistry using retinal-specific and retinal pigment epithelium (RPE)-specific antibodies. Three age-matched normal eyes were used as controls. DNA was obtained from donor blood samples. Sequence analysis of the entire BEST1 coding region was performed and identified a c.886A > C (p.Asn296His) variant in donor 1 and a c.602T > C (p.Ile201Thr) variant in donor 2; both mutations were heterozygous. Fundus examination showed that donor 1 displayed a macular lesion with considerable scarring while donor 2 displayed close to normal macular morphology. Our studies of histology and molecular pathology in the perifovea and periphery of these two BD donor eyes revealed panretinal abnormalities in both photoreceptors and RPE cellular levels in the periphery; donor 1 also displayed macular lesion. Our findings confirm the phenotypic variability of BD associated with BEST1 variants.
Collapse
Affiliation(s)
- Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.,Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Meghan J DeBenedictis
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Stephanie A Hagstrom
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Gerald A Fishman
- Pangere Center at The Chicago Lighthouse for People Who Are Blind or Visually Impaired, Chicago, IL, United States
| | - Joe G Hollyfield
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Short-Wavelength and Near-Infrared Autofluorescence in Patients with Deficiencies of the Visual Cycle and Phototransduction. Sci Rep 2020; 10:8998. [PMID: 32488013 PMCID: PMC7265524 DOI: 10.1038/s41598-020-65763-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Abstract
Fundus autofluorescence is a valuable imaging tool in the diagnosis of inherited retinal dystrophies. With the advent of gene therapy and the numerous ongoing clinical trials for inherited retinal degenerations, quantifiable and reliable outcome measurements continually need to be identified. In this retrospective analysis, normalized and non-normalized short-wavelength (SW-AF) and near-infrared (NIR-AF) autofluorescence images of ten patients with mutations in visual cycle (VC) genes and nineteen patients with mutations in phototransduction (PT) genes were analyzed. Normalized SW-AF and NIR-AF images appeared darker in all patients with mutations in the VC as compared to patients with mutations in PT despite the use of significantly higher detector settings for image acquisition in the former group. These findings were corroborated by quantitative analysis of non-normalized SW-AF and NIR-AF images; signal intensities were significantly lower in all patients with mutations in VC genes as compared to those with mutations in PT genes. We conclude that qualitative and quantitative SW-AF and NIR-AF images can serve as biomarkers of deficiencies specific to the VC. Additionally, quantitative autofluorescence may have potential for use as an outcome measurement to detect VC activity in conjunction with future therapies for patients with mutations in the VC.
Collapse
|
22
|
Yata N, Yasukawa T, Kawamura M, Hirano Y, Ogura Y. Macular hole and serous pigment epithelial detachment in bilateral acquired vitelliform lesions. Am J Ophthalmol Case Rep 2020; 18:100628. [PMID: 32140615 PMCID: PMC7049591 DOI: 10.1016/j.ajoc.2020.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/16/2019] [Accepted: 02/21/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose Acquired vitelliform lesions (AVLs) are associated with age-related macular degeneration and other variable macular disorders. AVLs often lead to outer retinal atrophy, sometimes accompanying a macular hole and choroidal neovascularization. The purpose of this study was to report a rare case with bilateral AVLs, in which one eye had accompanied a macular hole and the second eye a serous pigment epithelial detachment (sPED). Observations A 66-year-old woman complained of bilateral metamorphopsia. AVLs were observed in the right eye and a flat sPED in the left eye. The best-corrected visual acuity (BCVA) was 20/17 in both eyes. Fluorescein angiography revealed local leakage in the right eye and pattern dystrophy-like hypofluorescence in both eyes. The sPED progressed with AVLs in the left eye and was treated with a combination therapy of intravitreal aflibercept, a sub-Tenon's injection of triamcinolone acetonide, and photodynamic therapy (IVA/STTA/PDT), which successfully flattened the sPED and sustained good vision for 4 years. The right eye was treated with intravitreal ranibizumab and tissue plasminogen activator, which enhanced absorption of the vitelliform material. However, 14 months later, a macular hole with typical metamorphopsia formed above a subretinal fibrotic scar at the vitelliruptive stage. Although pars plana vitrectomy closed the macular hole, enlargement of the outer retinal atrophy worsened the BCVA to 20/100. Conclusions and importance We successfully treated one eye with a sPED with AVLs using the combination therapy of IVA/STTA/PDT, while the second eye with a macular hole secondary to AVLs ultimately developed outer retinal atrophy with visual loss.
Collapse
Affiliation(s)
- Nana Yata
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tsutomu Yasukawa
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mihoko Kawamura
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshio Hirano
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuichiro Ogura
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
23
|
Lessons learned from quantitative fundus autofluorescence. Prog Retin Eye Res 2019; 74:100774. [PMID: 31472235 DOI: 10.1016/j.preteyeres.2019.100774] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Quantitative fundus autofluorescence (qAF) is an approach that is built on a confocal scanning laser platform and used to measure the intensity of the inherent autofluorescence of retina elicited by short-wavelength (488 nm) excitation. Being non-invasive, qAF does not interrupt tissue architecture, thus allowing for structural correlations. The spectral features, cellular origin and topographic distribution of the natural autofluorescence of the fundus indicate that it is emitted from retinaldehyde-adducts that form in photoreceptor cells and accumulate, under most conditions, in retinal pigment epithelial cells. The distributions and intensities of fundus autofluorescence deviate from normal in many retinal disorders and it is widely recognized that these changing patterns can aid in the diagnosis and monitoring of retinal disease. The standardized protocol employed by qAF involves the normalization of fundus grey levels to a fluorescent reference installed in the imaging instrument. Together with corrections for magnification and anterior media absorption, this approach facilitates comparisons with serial images and images acquired within groups of patients. Here we provide a comprehensive summary of the principles and practice of qAF and we highlight recent efforts to elucidate retinal disease processes by combining qAF with multi-modal imaging.
Collapse
|