Zhang Y, Fu T, Han S, Ding Y, Wang J, Zheng J, Li J. Monocular Deprivation Affects Visual Cortex Plasticity Through cPKCγ-Modulated GluR1 Phosphorylation in Mice.
Invest Ophthalmol Vis Sci 2020;
61:44. [PMID:
32343785 PMCID:
PMC7401946 DOI:
10.1167/iovs.61.4.44]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose
To determine how visual cortex plasticity changes after monocular deprivation (MD) in mice and whether conventional protein kinase C gamma (cPKCγ) plays a role in visual cortex plasticity.
Methods
cPKCγ membrane translocation levels were quantified by using immunoblotting to explore the effects of MD on cPKCγ activation. Electrophysiology was used to record field excitatory postsynaptic potential (fEPSP) amplitude with the goal of observing changes in visual cortex plasticity after MD. Immunoblotting was also used to determine the phosphorylation levels of GluR1 at Ser831. Light transmission was analyzed using electroretinography to examine the effects of MD and cPKCγ on mouse retinal function.
Results
Membrane translocation levels of cPKCγ significantly increased in the contralateral visual cortex of MD mice compared to wild-type (WT) mice (P < 0.001). In the contralateral visual cortex, long-term potentiation (LTP) and the phosphorylation levels of GluR1 at Ser 831 were increased in cPKCγ+/+ mice after MD. Interestingly, these levels could be downregulated by cPKCγ knockout compared to cPKCγ+/++MD mice (P < 0.001). Compared to the right eyes of WT mice, the amplitudes of a-waves and b-waves declined in deprived right eyes of mice after MD (P < 0.001). There were no significant differences when comparing cPKCγ+/+ and cPKCγ−/− mice with MD.
Conclusions
cPKCγ participates in the plasticity of the visual cortex after MD, which is characterized by increased LTP in the contralateral visual cortex, which may be a result of cPKCγ-mediated phosphorylation of GluR1 at Ser 831.
Collapse