1
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
2
|
Yang J, Hua Z, Zheng Z, Ma X, Zhu L, Li Y. Acteoside inhibits high glucose-induced oxidative stress injury in RPE cells and the outer retina through the Keap1/Nrf2/ARE pathway. Exp Eye Res 2023; 232:109496. [PMID: 37268044 DOI: 10.1016/j.exer.2023.109496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Diabetes retinopathy (DR) is one of the most common microvascular complications of diabetes. Retinal pigment epithelial (RPE) cells exposed to a high glucose environment experience a series of functional damages, which is an important factor in promoting the progression of DR. Acteoside (ACT) has strong antioxidant and anti-apoptotic properties, but the mechanism of ACT in DR is not completely clear. Therefore, the purpose of the present study was to explore whether ACT inhibits the damage to RPE cells in a high glucose environment through antioxidative effects to alleviate the DR process. The DR in vitro cell model was constructed by treating RPE cells with high glucose, and the DR in vivo animal model was constructed by injecting streptozotocin (STZ) into the peritoneal cavity of mice to induce diabetes. The proliferation and apoptosis of RPE cells were detected by CCK-8 and flow cytometry assays, respectively. The expression changes in Nrf2, Keap1, NQO1 and HO-1 were evaluated by qRT‒PCR, Western blot and immunohistochemistry analyses. The MDA, SOD, GSH-Px and T-AOC contents were detected by kits. The changes in ROS and nuclear translocation of Nrf2 were observed by immunofluorescence assays. HE staining was used to measure the thickness of the outer nuclear layer (ONL) of the retina, and TUNEL staining was used to detect the number of apoptotic cells in the retinas of mice. In the present study, ACT effectively ameliorated outer retina damage in diabetic mice. In high glucose (HG)-induced RPE cells, ACT treatment had the following effects: improved proliferation, decreased apoptosis, inhibited Keap1 expression, promoted the nuclear translocation and expression of Nrf2, upregulated NQO1 and HO-1 (the target genes of Nrf2) expression, decreased ROS concentration, and increased the levels of the SOD, GSH-Px and T-AOC antioxidant indicators. However, knockdown of Nrf2 reversed the above phenomena, which indicated that the protective function of ACT in HG-induced RPE cells are closely related to Nrf2. In summary, the present study demonstrated that HG-induced oxidative stress injury is inhibited by ACT in RPE cells and the outer retina through the Keap1/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Jingfei Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Zhijuan Hua
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Zhikun Zheng
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Xuan Ma
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Liang Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
3
|
Anti-CXCL10 monoclonal antibody therapy protects against the diabetic retinopathy in the mouse model induced by streptozotocin. Tissue Cell 2022; 76:101745. [DOI: 10.1016/j.tice.2022.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 11/19/2022]
|
4
|
Renal protection induced by physical exercise may be mediated by the irisin/AMPK axis in diabetic nephropathy. Sci Rep 2022; 12:9062. [PMID: 35641586 PMCID: PMC9156698 DOI: 10.1038/s41598-022-13054-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/16/2022] [Indexed: 01/04/2023] Open
Abstract
In patients with diabetes, it has been suggested that physical exercise may reduce albuminuria and the progression of renal disease. However, the molecular mechanism by which physical exercise protects the kidney in diabetes remains poorly understood. The aim of the present study was to determine the contribution of muscle irisin secretion induced by aerobic physical exercise with the subsequent activation of AMPK for kidney protection under diabetic conditions. Aerobic physical exercise in rats protected the kidney in streptozotocin-induced diabetes. It reduced albuminuria, glomerular hypertrophy, and glomerular expression of collagen IV and fibronectin, as well as markers of kidney inflammation, when compared to sedentary diabetic rats. These effects were associated with elevation in muscle FNDC5/irisin and activity of AMPK in the diabetic kidney. However, the beneficial effects of exercise were lost when the diabetic rats were treated with CycloRGDyK, that in the bone it has been described as an irisin receptor blocker. In cultured human tubular (HK-2) cells, treatment with recombinant irisin counteracted the effect of high glucose in a dose-dependent manner. Irisin, per se, also activated AMPK in HK-2 cells. It is concluded that in diabetes, the renal protective effect of exercise may be mediated by the irisin/AMPK pathway.
Collapse
|
5
|
García-López C, Gómez-Huertas C, Sánchez-González JM, Borroni D, Rodríguez-Calvo-de-Mora M, Romano V, Rachwani-Anil R, Ramos-López JF, Ortiz-Pérez S, Rocha-de-Lossada C. Opioids and Ocular Surface Pathology; A Literature Review of New Treatments Horizons. J Clin Med 2022; 11:jcm11051424. [PMID: 35268515 PMCID: PMC8911328 DOI: 10.3390/jcm11051424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
This review discusses the role of opioids in the corneal surface and the different pathways and therapeutic methods of management. A literature review was performed using PubMed database. For the database search, the main searching words “opioid” and “topical opioid treatment” were used with the descriptors “cornea”, “ocular surface”, “neuropathic corneal pain”, “corneal sensitivity” and “naltrexone”; original scientific articles and reviews were included to achieve the purpose of the review. The endogenous opioid system has relevant functions in the organism, and in daily use, opioids are used as painkillers. However, these drugs may be employed for other indications as opioid pathways have a wide spectrum. The corneal surface for topical treatment is easily accessible, hence sparing the side effects of systemic opioids. Instillation of opioid antagonist substances, such as naltrexone, increases corneal healing rates and stimulates the division of corneal epithelium cells without deleterious effects. The natural modulation of endogenous opioids controls different forms of pain, including inflammatory and neuropathic pain, both in the ocular surface and in the central nervous system. There are diverse methods in controlling pain using opioids, especially in refractory forms. This review attempts to collect the literature about corneal surface and opioid pathways to provide an overview image and a possible direction of the news treatments.
Collapse
Affiliation(s)
- Celia García-López
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
| | - Carmen Gómez-Huertas
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
| | - José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain
- Correspondence: ; Tel.: +34-955-42-08-61
| | - Davide Borroni
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia;
- Cornea Research Unit, ADVALIA Vision, 20145 Milan, Italy
| | - Marina Rodríguez-Calvo-de-Mora
- Department of Ophthalmology, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Department of Ophthalmology (Qvision), Vithas Almería, 04120 Almería, Spain
| | - Vito Romano
- Department of Eye and Vision Science Ophthalmology, St Paul’s Eye Hospital, Liverpool L7 8XP, UK;
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, 25121 Brescia, Italy
| | | | - Juan-Francisco Ramos-López
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
| | - Santiago Ortiz-Pérez
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
- Department of Surgery, Faculty of Medicine, University of Granada, 18010 Granada, Spain
| | - Carlos Rocha-de-Lossada
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
- Department of Ophthalmology (Qvision), Vithas Almería, 04120 Almería, Spain
- Department of Ophthalmology, Ceuta Medical Center, 51001 Ceuta, Spain
| |
Collapse
|
6
|
Su Y, Tang Z, Wang F. Role of LINC01592 in TGF-β1-induced epithelial-mesenchymal transition of retinal pigment epithelial cells. Aging (Albany NY) 2021; 13:14053-14064. [PMID: 34032608 PMCID: PMC8202905 DOI: 10.18632/aging.203023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Regulation of long-chain non-coding RNA01592 (LINC01592) in the process of transforming retinal pigment epithelial (RPE) cells into mesenchymal cells following induction by transforming growth factor beat 1 (TGF-β1) was investigated by interfering with LINC01592 expression in human RPE (hRPE) cells. LINC01592 expression in hRPE cells was significantly increased following treatment with 10 ng/mL TGF-β1 for 48 h. Expression of E-cadherin and Snail were decreased in hRPE cells following induction with TGF-β1 compared with the control group (P < 0.05). Following induction by TGF-β1, expression of E-cadherin, alpha-smooth muscle actin (α-SMA), and Snail were significantly lower in the LINC01592-knockdown group compared with the negative control group (P < 0.05). LINC01592 overexpression significantly enhanced the viability, proliferation, and migration of hRPE cells induced by TGF-β1 (P < 0.05). Following induction by TGF-β1, E-cadherin expression was significantly decreased and α-SMA and Snail expression were significantly increased in the LINC01592-overexpression group compared with the negative control group (P < 0.05). RPE cells induced by TGF-β1 exhibited epithelial-mesenchymal transition (EMT). Inhibiting LINC01592 expression could significantly reduce TGF-β1-induced EMT of hRPE cells. The regulatory effect of LINC01592 on EMT in hRPE cells induced by TGF-β1 provides a novel treatment for proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Ying Su
- Department of Ophthalmology, The First Hospital of Harbin Medical University, Harbin, China
| | - Ziyan Tang
- Department of Ophthalmology, The First Hospital of Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The First Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Borges CM, Fujihara CK, Malheiros DMAC, de Ávila VF, Formigari GP, Lopes de Faria JB. Metformin arrests the progression of established kidney disease in the subtotal nephrectomy model of chronic kidney disease. Am J Physiol Renal Physiol 2020; 318:F1229-F1236. [DOI: 10.1152/ajprenal.00539.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metformin, an AMP-activated protein kinase (AMPK) activator, has been shown in previous studies to reduce kidney fibrosis in different models of experimental chronic kidney disease (CKD). However, in all of these studies, the administration of metformin was initiated before the establishment of renal disease, which is a condition that does not typically occur in clinical settings. The aim of the present study was to investigate whether the administration of metformin could arrest the progression of established renal disease in a well-recognized model of CKD, the subtotal kidney nephrectomy (Nx) model. Adult male Munich-Wistar rats underwent either Nx or sham operations. After the surgery (30 days), Nx rats that had systolic blood pressures of >170 mmHg and albuminuria levels of >40 mg/24 h were randomized to a no-treatment condition or to a treatment condition with metformin (300 mg·kg−1·day−1) for a period of either 60 or 120 days. After 60 days of treatment, we did not observe any differences in kidney disease parameters between Nx metformin-treated and untreated rats. However, after 120 days, Nx rats that had been treated with metformin displayed significant reductions in albuminuria levels and in markers of renal fibrosis. These effects were independent of any other effects on blood pressure or glycemia. In addition, treatment with metformin was also able to activate kidney AMPK and therefore improve mitochondrial biogenesis. It was concluded that metformin can arrest the progression of established kidney disease in the Nx model, likely via the activation of AMPK.
Collapse
Affiliation(s)
- Cynthia M. Borges
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Faculty of Medicine, Renal Division, Department of Clinical Medicine, University of São Paulo, São Paulo, Brazil
| | - Denise M. A. C. Malheiros
- Faculty of Medicine, Renal Pathology, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira de Ávila
- Faculty of Medicine, Renal Division, Department of Clinical Medicine, University of São Paulo, São Paulo, Brazil
| | - Guilherme Pedrom Formigari
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | - José B. Lopes de Faria
- Renal Pathophysiology Laboratory, Investigation on Diabetes Complications, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|