1
|
Dutczak R, Pietrucha-Dutczak M. Effects of Selected Antioxidants on Electroretinography in Rodent Diabetic Retinopathy. Antioxidants (Basel) 2024; 14:21. [PMID: 39857355 PMCID: PMC11762402 DOI: 10.3390/antiox14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Electroretinography (ERG) is a non-invasive technique for evaluating the retinal function in various ocular diseases. Its results are useful for diagnosing ocular disorders and assessing disease progression or treatment effectiveness. Since numerous studies are based on animal models, validating the ERG results from animals is pivotal. The first part of this paper presents basic information on the types of ERG tests used on rodents, and the second part describes the recorded functional changes in rodents' retinas when various antioxidant treatments for diabetic retinopathy were used. Our study showed that among the tests for diabetic retinopathy diagnosis in rodents, full-field ERG is accurate and the most commonly used, and pattern ERG and the photopic negative response of the flash ERG tests are rarely chosen. Furthermore, antioxidants generally protect retinas from functional losses. Their beneficial influence is expressed in the preserved amplitudes of the a- and b-waves and the oscillatory potentials. However, prolonging the drug exposure showed that the antioxidants could delay the onset of adverse changes but did not stop them. Future studies should concentrate on how long-term antioxidant supplementation affects the retinal function.
Collapse
Affiliation(s)
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| |
Collapse
|
2
|
El Hajji S, Shiga Y, Belforte N, Solorio YC, Tastet O, D’Onofrio P, Dotigny F, Prat A, Arbour N, Fortune B, Di Polo A. Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. SCIENCE ADVANCES 2024; 10:eadl5722. [PMID: 39110798 PMCID: PMC11305393 DOI: 10.1126/sciadv.adl5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.
Collapse
Affiliation(s)
- Sana El Hajji
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nicolas Belforte
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Olivier Tastet
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Philippe D’Onofrio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Florence Dotigny
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Daka Q, Sustar Habjan M, Meglič A, Perovšek D, Atanasovska Velkovska M, Cvenkel B. Retinal Ganglion Cell Function and Perfusion following Intraocular Pressure Reduction with Preservative-Free Latanoprost in Patients with Glaucoma and Ocular Hypertension. J Clin Med 2024; 13:1226. [PMID: 38592025 PMCID: PMC10931696 DOI: 10.3390/jcm13051226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
(1) Background: Given the global prevalence of glaucoma and the crucial role of intraocular pressure (IOP) reduction in the management of the disease, understanding the immediate effects on retinal structure and function is essential. (2) Methods: This study aimed to assess the effects of preservative-free latanoprost on morphological and functional parameters in treatment-naïve patients with ocular hypertension and open-angle glaucoma. (3) Results: This study showed a significant reduction in IOP by an average of 30.6% after treatment with preservative-free latanoprost. Despite the significant reduction in IOP, no statistically significant changes were observed in the electroretinogram (ERG) nor the optical coherence tomography/angiography (OCT/OCTA) parameters compared to baseline. An exploration of the correlation between IOP changes and various parameters revealed a significant association solely with the macular IPL/INL plexus vessel density (VD) measured with OCTA. (4) Conclusions: This finding suggests a possible association between IOP reduction and changes in the macular microcirculation and provides valuable insights into the differential effects of latanoprost. Acknowledging the study limitations, this study emphasizes the need for larger, longer-term investigations to comprehensively assess the sustained effects of preservative-free latanoprost on both IOP and retinal parameters. In addition, exploring systemic factors and conducting subgroup analyses could improve personalized approaches to glaucoma treatment.
Collapse
Affiliation(s)
- Qëndresë Daka
- Department of Pathophysiology, Medical Faculty, University of Prishtina, 10000 Prishtina, Kosovo
- Department of Ophthalmology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.S.H.)
| | - Maja Sustar Habjan
- Department of Ophthalmology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.S.H.)
| | - Andrej Meglič
- Department of Ophthalmology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.S.H.)
| | - Darko Perovšek
- Department of Ophthalmology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.S.H.)
| | | | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.S.H.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Igawa Y, Shoji T, Weinreb R, Miyake Y, Yoshikawa Y, Takano S, Shinoda K. Early changes in photopic negative response in eyes with glaucoma with and without choroidal detachment after filtration surgery. Br J Ophthalmol 2023; 107:1295-1302. [PMID: 35396212 PMCID: PMC10447412 DOI: 10.1136/bjophthalmol-2021-320730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/26/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS To evaluate the electroretinographic (ERG) changes in the early postoperative period following glaucoma filtration surgery, and its relationship with choroidal detachment (CD). METHODS This retrospective observational single-centre study included 57 consecutive patients with primary open-angle glaucoma who underwent unilateral glaucoma filtration surgery. The patients were divided into two groups according to the presence or absence of CD. ERG components, including the photopic negative response (PhNR), a-wave and b-wave were compared before and after surgery using skin electrodes. RESULTS There were 46 patients in the non-CD group and 11 in the CD group. ERG was recorded within 5.1 (2.1 to 8.1) (mean (95% CI)) days after surgery. In the non-CD group, the PhNR amplitude, PhNR/b-wave amplitude ratio and PhNR implicit time improved significantly after surgery (p=0.008, 0.002 and 0.039, respectively). In the CD group, the amplitude of the PhNR, a-wave and b-wave were significantly deteriorated after surgery (p=0.002, 0.001 and 0.001, respectively). Postoperative intraocular pressure (IOP) (p=0.031) and postoperative CD (p<0.001) were significantly associated with change in the PhNR amplitude in the univariate models. In the multivariate analysis, severe CD (stage 3) cases tended to be deteriorated more. CONCLUSION Even in the early postoperative period within several days, the PhNR amplitude increased with IOP lowering following filtration surgery in the absence of CD. The presence of CD may arrest the improvement of the retinal ganglion cell function. The present results enhance understanding the structural and functional recovery after glaucoma surgery and the role of postoperative CD.
Collapse
Affiliation(s)
- Yuro Igawa
- Department of Ophthalmology, Saitama Medical University, Iruma, Saitama, Japan
| | - Takuhei Shoji
- Department of Ophthalmology, Saitama Medical University, Iruma, Saitama, Japan
| | - Robert Weinreb
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, California, USA
| | | | - Yuji Yoshikawa
- Ophthalmology, Saitama Medical University Hospital, Moroyama-machi, Saitama, Japan
| | - Shunichiro Takano
- Department of Ophthalmology, Saitama Medical University, Iruma, Saitama, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Saitama Medical University, Iruma, Saitama, Japan
- Ophthalmology, Teikyo University School of Medicine Graduate School of Medicine, Itabashi-ku, Japan
| |
Collapse
|
6
|
Wang DD, Gao FJ, Zhang XJ, Hu FY, Xu P, Wu JH. Nobiletin protects retinal ganglion cells in models of ocular hypertension in vivo and hypoxia in vitro. J Transl Med 2022; 102:1225-1235. [PMID: 35804043 DOI: 10.1038/s41374-022-00813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Glaucoma, a common cause of blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs). Growing evidence suggests that nobiletin (NOB) is a promising neuroprotective drug; however, its effects on glaucomatous neurodegeneration remain unknown. Using rat models of microbead occlusion in vivo and primary RGCs model of hypoxia in vitro, we first demonstrate that NOB reduces RGC apoptosis by a TUNEL assay, Hoechst 33342 staining and FluoroGold (FG) retrograde labeling. This effect does not depend on intraocular pressure (IOP) lowering. Additionally, NOB partially restored the functional and structural damage of inner retinas, attenuated Müller glial activation and oxidative stress caused by ocular hypertension. At 2 weeks after IOP elevation, NOB further enhanced Nrf2/HO-1 pathway in RGCs to withstand the cumulative damage of ocular hypertension. With the administration of HO-1 inhibitor tin-protoporphyrin IX (SnPP), the protective effect of NOB was attenuated. Overall, these results indicate that NOB exerts an outstanding neuroprotective effect on RGCs of glaucomatous neurodegeneration. Besides, interventions to enhance activation of Nrf2/HO-1 pathway can slow the loss of RGCs and are viable therapies for glaucoma.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Feng-Juan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Xue-Jin Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Fang-Yuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,Key Laboratory of Myopia, Ministry of Health, Shanghai, China.
| |
Collapse
|
7
|
Sarossy M, Crowston J, Kumar D, Weymouth A, Wu Z. Time-Frequency Analysis of ERG With Discrete Wavelet Transform and Matching Pursuits for Glaucoma. Transl Vis Sci Technol 2022; 11:19. [PMID: 36227605 PMCID: PMC9583752 DOI: 10.1167/tvst.11.10.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose To examine the performance of two time-frequency feature extraction techniques applied to electroretinograms (ERGs) for the prediction of glaucoma severity. Methods ERGs targeting the photopic negative response were obtained in 103 eyes of 55 patients with glaucoma. Features from the ERG recordings were extracted using two time-frequency extraction techniques based on the discrete wavelet transform (DWT) and the matching pursuit (MP) decomposition. Amplitude markers of the time-domain signal were also extracted. Linear and multivariate adaptive regression spline (MARS) models were fitted using combinations of these features to predict estimated retinal ganglion cell counts, a measure of glaucoma disease severity derived from standard automated perimetry and optical coherence tomography imaging. Results Predictive models using features from the time-frequency analyses-using both DWT and MP-combined with amplitude markers outperformed predictive models using the markers alone with linear (P = 0.001) and MARS (P ≤ 0.011) models. For example, the proportions of variance (R2) explained by the MARS model using the DWT and MP features with amplitude markers were 0.53 and 0.63, respectively, compared to 0.34 for the model using the markers alone (P = 0.011 and P = 0.001, respectively). Conclusions Novel time-frequency features extracted from the photopic ERG substantially added to the prediction of glaucoma severity compared to using the time-domain amplitude markers alone. Translational Relevance Substantial information about retinal ganglion cell dysfunction exists in the time-frequency domain of ERGs that could be useful in the management of glaucoma.
Collapse
Affiliation(s)
- Marc Sarossy
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Anne Weymouth
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhichao Wu
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Gajendran MK, Rohowetz LJ, Koulen P, Mehdizadeh A. Novel Machine-Learning Based Framework Using Electroretinography Data for the Detection of Early-Stage Glaucoma. Front Neurosci 2022; 16:869137. [PMID: 35600610 PMCID: PMC9115110 DOI: 10.3389/fnins.2022.869137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 01/05/2023] Open
Abstract
PurposeEarly-stage glaucoma diagnosis has been a challenging problem in ophthalmology. The current state-of-the-art glaucoma diagnosis techniques do not completely leverage the functional measures' such as electroretinogram's immense potential; instead, focus is on structural measures like optical coherence tomography. The current study aims to take a foundational step toward the development of a novel and reliable predictive framework for early detection of glaucoma using machine-learning-based algorithm capable of leveraging medically relevant information that ERG signals contain.MethodsERG signals from 60 eyes of DBA/2 mice were grouped for binary classification based on age. The signals were also grouped based on intraocular pressure (IOP) for multiclass classification. Statistical and wavelet-based features were engineered and extracted. Important predictors (ERG tests and features) were determined, and the performance of five machine learning-based methods were evaluated.ResultsRandom forest (bagged trees) ensemble classifier provided the best performance in both binary and multiclass classification of ERG signals. An accuracy of 91.7 and 80% was achieved for binary and multiclass classification, respectively, suggesting that machine-learning-based models can detect subtle changes in ERG signals if trained using advanced features such as those based on wavelet analyses.ConclusionsThe present study describes a novel, machine-learning-based method to analyze ERG signals providing additional information that may be used to detect early-stage glaucoma. Based on promising performance metrics obtained using the proposed machine-learning-based framework leveraging an established ERG data set, we conclude that the novel framework allows for detection of functional deficits of early/various stages of glaucoma in mice.
Collapse
Affiliation(s)
- Mohan Kumar Gajendran
- Department of Civil and Mechanical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Landon J. Rohowetz
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Amirfarhang Mehdizadeh
- Department of Civil and Mechanical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
- Vision Research Center, Department of Ophthalmology, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Amirfarhang Mehdizadeh
| |
Collapse
|
9
|
Villegas NC, Lee WS. Effectiveness of Netarsudil as an Additional Therapy for Glaucoma in Patients Already on Maximally Tolerated Medical Therapy. Clin Ophthalmol 2021; 15:4367-4372. [PMID: 34754176 PMCID: PMC8572117 DOI: 10.2147/opth.s337105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study seeks to evaluate the effectiveness of netarsudil (Rhopressa) in patients with inadequately controlled IOP on otherwise maximally tolerated medical therapy. Methods This is a retrospective study of patients started on netarsudil at Stanford University. Exclusion criteria included glaucoma surgery or laser within 6 months of starting netarsudil and other modifications to the baseline medication regimen within 4 weeks of starting netarsudil. The primary outcome was treatment success, defined as IOP reduction meeting a predetermined target, and no further medication, laser, or surgery recommended subsequent to starting netarsudil. Results Sixty-two eyes were included, and 36 (58%) achieved treatment success at first follow-up. Mean baseline IOP was 19.5 ± 5.6 mmHg on a mean of 3.5 ± 0.7 ocular hypotensive medications. The mean change in IOP from baseline to first follow-up was -3.53 mmHg (-17%). In patients who achieved treatment success, mean IOP change was -5.22 mmHg (-28.0%). Of the eyes with baseline IOP ≤ 20 mmHg, 69% achieved treatment success, compared to only 17% of eyes with baseline IOP ≥ 21 mmHg (P < 0.05). Conclusion Netarsudil is effective in lowering IOP for patients on otherwise maximally tolerated medical therapy, for which glaucoma laser or surgery would have been the only remaining therapeutic options. Treatment success was more likely in eyes with baseline IOP under 20 mmHg.
Collapse
Affiliation(s)
- Natacha C Villegas
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wen-Shin Lee
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Kong AW, Turner ML, Chan H, Stamper RL, Arnold BF, Della Santina L, Ou Y. Asymmetric Functional Impairment of ON and OFF Retinal Pathways in Glaucoma. OPHTHALMOLOGY SCIENCE 2021; 1:100026. [PMID: 35756578 PMCID: PMC9232180 DOI: 10.1016/j.xops.2021.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Purpose To investigate ON-pathway versus OFF-pathway dysfunction in glaucoma using handheld electroretinography (ERG) with a temporally modulated sinusoidal flicker stimulus. Design Cross-sectional study. Participants Fifty-nine participants accounting for 104 eyes, comprised of 19 control eyes, 26 glaucoma suspect eyes, and 59 glaucoma eyes. Methods Participants underwent portable ERG testing, which included the photopic flash, photopic flicker, photopic negative response stimulus, ON-OFF stimulus, and a custom-written sinusoidal flicker stimulus that was modulated from 50 to 0.3 Hz. Main Outcome and Measures The ERG response amplitudes were measured by the handheld ERG. For the custom-written sinusoidal flicker stimulus, we derived and compared the log10 first harmonic frequency response amplitudes. Patient discomfort and fatigue after ERG testing were rated on a scale from 1 to 5. Results Baseline demographics were not significantly different between groups, except for ocular characteristics. Analysis was performed adjusting for participant age, sex, race, and dilation status, and the sinusoidal frequency responses were stratified at 10 Hz because higher frequencies are associated with the OFF-pathway, whereas lower frequencies are associated with the ON-pathway. After stratification, glaucoma eyes showed an adjusted decrease of 32.1% at frequencies of more than 10 Hz (95% confidence interval [CI], -51.8% to -4.1%; P = 0.03). For 10 Hz stimulus frequencies or less, an adjusted 11.5% reduction was found (95% CI, -39.5% to 29.1%; P = 0.50). Glaucoma suspect eyes did show a decreased response, but this was not significant at either frequency range. When comparing handheld ERG with traditional visual field assessments, participants found the handheld ERG to result in much less discomfort and fatigue. Conclusions Our finding that glaucoma participants showed greater decreases in ERG response at higher frequencies supports the hypothesis that the OFF-pathway may be more vulnerable in human glaucoma. Using a handheld ERG device with a sinusoidal flicker stimulus may provide an objective assessment of visual function in glaucoma.
Collapse
Affiliation(s)
- Alan W. Kong
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Marcus L. Turner
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Hoover Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Robert L. Stamper
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Benjamin F. Arnold
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California
| | - Luca Della Santina
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
11
|
Tribble JR, Hui F, Jöe M, Bell K, Chrysostomou V, Crowston JG, Williams PA. Targeting Diet and Exercise for Neuroprotection and Neurorecovery in Glaucoma. Cells 2021; 10:295. [PMID: 33535578 PMCID: PMC7912764 DOI: 10.3390/cells10020295] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. In glaucoma, a progressive dysfunction and death of retinal ganglion cells occurs, eliminating transfer of visual information to the brain. Currently, the only available therapies target the lowering of intraocular pressure, but many patients continue to lose vision. Emerging pre-clinical and clinical evidence suggests that metabolic deficiencies and defects may play an important role in glaucoma pathophysiology. While pre-clinical studies in animal models have begun to mechanistically uncover these metabolic changes, some existing clinical evidence already points to potential benefits in maintaining metabolic fitness. Modifying diet and exercise can be implemented by patients as an adjunct to intraocular pressure lowering, which may be of therapeutic benefit to retinal ganglion cells in glaucoma.
Collapse
Affiliation(s)
- James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; (F.H.); (J.G.C.)
- Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, VIC 3053, Australia
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| | - Katharina Bell
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
| | - Vicki Chrysostomou
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jonathan G. Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia; (F.H.); (J.G.C.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore; (K.B.); (V.C.)
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64 Stockholm, Sweden; (J.R.T.); (M.J.)
| |
Collapse
|