1
|
Bacci GM, Marziali E, Bargiacchi S, Paques M, Virgili G, Fortunato P, Durand M, Rocca C, Pagliazzi A, Palazzo V, Tiberi L, Vergani D, Landini S, Peron A, Artuso R, Pacini B, Stabile M, Sodi A, Caputo R. Multimodal phenotyping of foveal hypoplasia in albinism and albino-like conditions: a pediatric case series with adaptive optics insights. Sci Rep 2024; 14:15454. [PMID: 38965328 PMCID: PMC11224352 DOI: 10.1038/s41598-024-66326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Aim of the present study is to evaluate the relationship between genetic and phenotypic data in a series of patients affected by grade I and II of foveal hypoplasia with stable fixation and good visual acuity using multimodal imaging techniques. All patients underwent complete clinical and instrumental assessment including structural Optical Coherence Tomography (OCT), OCT Angiography and Adaptive Optics (AO) imaging. Central macular thickness (CMT), inner nuclear layer (INL), vessel density in superficial capillary plexus were the main variables evaluated with OCT technology. Cone density, cone spacing, cone regularity, cone dispersion and angular density were the parameters evaluated with AO. Genetic evaluation and trio exome sequencing were performed in all affected individuals. Eight patients (3 males and 5 females) with a mean age of 12.62 years (range 8-18) were enrolled. The mean best corrected visual acuity (BCVA) was 0.18 ± 0.13 logMAR, mean CMT was 291.9 ± 16.6 µm and INL was 26.2 ± 4.6 µm. The absence of a foveal avascular zone (FAZ) was documented by examination of OCT-A in seven patients in the superficial capillary plexus. However, there was a partial FAZ in the deep plexus in patients P5 and P8. Of note, all the patients presented with major retinal vessels clearly crossing the foveal center. All individuals exhibited a grade I or II of foveal hypoplasia. In 5 patients molecular analyses showed an extremely mild form of albinism caused by compound heterozygosity of a TYR pathogenic variant and the hypomorphic p.[Ser192Tyr;Arg402Gln] haplotype. One patient had Waardenburg syndrome type 2A caused by a de novo variant in MITF. Two patients had inconclusive molecular analyses. All the patients displayed abnormalities on OCT-A. Photoreceptor count did not differ from normal subjects according to the current literature, but qualitative analysis of AO imaging showed distinctive features likely related to an abnormal pigment distribution in this subset of individuals. In patients with foveal hypoplasia, genetic and multimodal imaging data, including AO findings, can help understand the physiopathology of the foveal hypoplasia phenotype. This study confirms that cone density and visual function can both be preserved despite the absence of a pit.
Collapse
Affiliation(s)
- Giacomo M Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy.
| | - Elisa Marziali
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Michel Paques
- Clinical Investigation Center Vision 1423, INSERM-DGOS, Sorbonne Université, Quinze-Vingts Hospital, Paris, France
- Institut de la Vision, Paris, France
| | - Gianni Virgili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS - Fondazione Bietti, Rome, Italy
| | - Pina Fortunato
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
| | | | - Camilla Rocca
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Angelica Pagliazzi
- Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Angela Peron
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Bianca Pacini
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Monica Stabile
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Roberto Caputo
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
| |
Collapse
|
2
|
Untaroiu A, Reis LM, Higgins BP, Walesa A, Zacharias S, Nikezic D, Costakos DM, Carroll J, Semina EV. In Vivo Assessment of Retinal Phenotypes in Axenfeld-Rieger Syndrome. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 38587439 PMCID: PMC11005067 DOI: 10.1167/iovs.65.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Axenfeld-Rieger syndrome (ARS) is characterized by ocular anomalies including posterior embryotoxon, iridocorneal adhesions, corectopia/iris hypoplasia, and developmental glaucoma. Although anterior segment defects and glaucoma contribute to decreased visual acuity, the role of potential posterior segment abnormalities has not been explored. We used high-resolution retinal imaging to test the hypothesis that individuals with ARS have posterior segment pathology. Methods Three individuals with FOXC1-ARS and 10 with PITX2-ARS completed slit-lamp and fundus photography, optical coherence tomography (OCT), OCT angiography, and adaptive optics scanning light ophthalmoscopy (AOSLO). Quantitative metrics were compared to previously published values for individuals with normal vision. Results All individuals demonstrated typical anterior segment phenotypes. Average ganglion cell and inner plexiform layer thickness was lower in PITX2-ARS, consistent with the glaucoma history in this group. A novel phenotype of foveal hypoplasia was noted in 40% of individuals with PITX2-ARS (but none with FOXC1-ARS). Moreover, the depth and volume of the foveal pit were significantly lower in PITX2-ARS compared to normal controls, even excluding individuals with foveal hypoplasia. Analysis of known foveal hypoplasia genes failed to identify an alternative explanation. Foveal cone density was decreased in one individual with foveal hypoplasia and normal in six without foveal hypoplasia. Two individuals (one from each group) demonstrated non-foveal retinal irregularities with regions of photoreceptor anomalies on OCT and AOSLO. Conclusions These findings implicate PITX2 in the development of the posterior segment, particularly the fovea, in humans. The identified posterior segment phenotypes may contribute to visual acuity deficits in individuals with PITX2-ARS.
Collapse
Affiliation(s)
- Ana Untaroiu
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Linda M. Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian P. Higgins
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ashleigh Walesa
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Serena Zacharias
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Danica Nikezic
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Deborah M. Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Elena V. Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Childrens Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Domdei N, Ameln J, Gutnikov A, Witten JL, Holz FG, Wahl S, Harmening WM. Cone Density Is Correlated to Outer Segment Length and Retinal Thickness in the Human Foveola. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 38064229 PMCID: PMC10709802 DOI: 10.1167/iovs.64.15.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Assessment of the relationship between in vivo foveolar cone density, cone outer segment length (OSL), and foveal retinal thickness (RT). Methods Foveolar cone density maps covering the central ±300 µm of the retina were derived from adaptive optics scanning laser ophthalmoscopy images. The corresponding maps of foveal cone OSL and RT were derived from high-resolution optical coherence tomography volume scans. Alignment of the two-dimensional maps containing OSL and RT with the cone density map was achieved by placing the location of maximum OSL on the cone density centroid (CDC). Results Across 10 participants (27 ± 9 years; 6 female), cone density at the CDC was found to be between 147,038 and 215,681 cones/mm². The maximum OSL and minimum RT were found to lie between 31 and 40, and 193 and 226 µm, respectively. A significant correlation was observed between cone density at the CDC and maximum OSL (P = 0.001), as well as the minimal RT (P < 0.05). Across all participants, the best fit for the relationship between normalized cone density and normalized OSL within the central 300 µm was given by a quadratic function. Conclusions Using optical coherence tomography-derived measurements of OSL enables to estimate CDC cone density and two-dimensional foveal cone density maps for example in patient eyes unsuitable for adaptive optics imaging. Furthermore, the observation of a fixed relationship between the normalized OSL and cone density points to a conserved mechanism shaping the foveal pit.
Collapse
Affiliation(s)
- Niklas Domdei
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Julius Ameln
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Jenny L Witten
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Aalen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | | |
Collapse
|
4
|
Kuht HJ, Maconachie GDE, Han J, Kessel L, van Genderen MM, McLean RJ, Hisaund M, Tu Z, Hertle RW, Gronskov K, Bai D, Wei A, Li W, Jiao Y, Smirnov V, Choi JH, Tobin MD, Sheth V, Purohit R, Dawar B, Girach A, Strul S, May L, Chen FK, Heath Jeffery RC, Aamir A, Sano R, Jin J, Brooks BP, Kohl S, Arveiler B, Montoliu L, Engle EC, Proudlock FA, Nishad G, Pani P, Varma G, Gottlob I, Thomas MG. Genotypic and Phenotypic Spectrum of Foveal Hypoplasia: A Multicenter Study. Ophthalmology 2022; 129:708-718. [PMID: 35157951 PMCID: PMC9341240 DOI: 10.1016/j.ophtha.2022.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To characterize the genotypic and phenotypic spectrum of foveal hypoplasia (FH). DESIGN Multicenter, observational study. PARTICIPANTS A total of 907 patients with a confirmed molecular diagnosis of albinism, PAX6, SLC38A8, FRMD7, AHR, or achromatopsia from 12 centers in 9 countries (n = 523) or extracted from publicly available datasets from previously reported literature (n = 384). METHODS Individuals with a confirmed molecular diagnosis and availability of foveal OCT scans were identified from 12 centers or from the literature between January 2011 and March 2021. A genetic diagnosis was confirmed by sequence analysis. Grading of FH was derived from OCT scans. MAIN OUTCOME MEASURES Grade of FH, presence or absence of photoreceptor specialization (PRS+ vs. PRS-), molecular diagnosis, and visual acuity (VA). RESULTS The most common genetic etiology for typical FH in our cohort was albinism (67.5%), followed by PAX6 (21.8%), SLC38A8 (6.8%), and FRMD7 (3.5%) variants. AHR variants were rare (0.4%). Atypical FH was seen in 67.4% of achromatopsia cases. Atypical FH in achromatopsia had significantly worse VA than typical FH (P < 0.0001). There was a significant difference in the spectrum of FH grades based on the molecular diagnosis (chi-square = 60.4, P < 0.0001). All SLC38A8 cases were PRS- (P = 0.003), whereas all FRMD7 cases were PRS+ (P < 0.0001). Analysis of albinism subtypes revealed a significant difference in the grade of FH (chi-square = 31.4, P < 0.0001) and VA (P = 0.0003) between oculocutaneous albinism (OCA) compared with ocular albinism (OA) and Hermansky-Pudlak syndrome (HPS). Ocular albinism and HPS demonstrated higher grades of FH and worse VA than OCA. There was a significant difference (P < 0.0001) in VA between FRMD7 variants compared with other diagnoses associated with FH. CONCLUSIONS We characterized the phenotypic and genotypic spectrum of FH. Atypical FH is associated with a worse prognosis than all other forms of FH. In typical FH, our data suggest that arrested retinal development occurs earlier in SLC38A8, OA, HPS, and AHR variants and later in FRMD7 variants. The defined time period of foveal developmental arrest for OCA and PAX6 variants seems to demonstrate more variability. Our findings provide mechanistic insight into disorders associated with FH and have significant prognostic and diagnostic value.
Collapse
Affiliation(s)
- Helen J Kuht
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group
| | - Gail D E Maconachie
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Academic Unit of Ophthalmology and Orthoptics, University of Sheffield, Sheffield, United Kingdom; Foveal Development Investigators Group
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Foveal Development Investigators Group
| | - Line Kessel
- Department of Ophthalmology, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Foveal Development Investigators Group
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands; Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, The Netherlands; Foveal Development Investigators Group
| | - Rebecca J McLean
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Michael Hisaund
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Zhanhan Tu
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group
| | - Richard W Hertle
- Department of Ophthalmology, The Rebecca D. Considine Research Institute and The Children's Vision Center, Akron Children's Hospital, Akron, Ohio; Department of Surgery, The Northeastern Ohio Medical University, Rootstown, Ohio; Foveal Development Investigators Group
| | - Karen Gronskov
- Department of Clinical Genetics, Rigshospitalet-Kennedy Center, Glostrup, Denmark; Foveal Development Investigators Group
| | - Dayong Bai
- Department of Ophthalmology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China; Foveal Development Investigators Group
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Foveal Development Investigators Group
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China; Foveal Development Investigators Group
| | - Yonghong Jiao
- Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China; Foveal Development Investigators Group
| | - Vasily Smirnov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France; Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France; Foveal Development Investigators Group
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea; Foveal Development Investigators Group
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group
| | - Viral Sheth
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Academic Unit of Ophthalmology and Orthoptics, University of Sheffield, Sheffield, United Kingdom
| | - Ravi Purohit
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Basu Dawar
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Ayesha Girach
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Sasha Strul
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota; Foveal Development Investigators Group
| | - Laura May
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota; Foveal Development Investigators Group
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Crawley, Australia; Foveal Development Investigators Group
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Crawley, Australia; Foveal Development Investigators Group
| | - Abdullah Aamir
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Ronaldo Sano
- Retina and Vitreous Sector of Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil; Foveal Development Investigators Group
| | - Jing Jin
- Sidney Kimmel Medical College of Thomas Jefferson University, Nemours Children's Health, Philadelphia, Pennsylvania; Nemours Children's Health, Wilmington, Delaware
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland; Foveal Development Investigators Group
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Tübingen, Tübingen, Germany; Foveal Development Investigators Group
| | - Benoit Arveiler
- Rare Diseases, Genetics and Metabolism, INSERM U1211, University of Bordeaux, Bordeaux, France; Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France; Foveal Development Investigators Group
| | - Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and CIBERER-ISCIII, Madrid, Spain; Foveal Development Investigators Group
| | - Elizabeth C Engle
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland; Foveal Development Investigators Group
| | - Frank A Proudlock
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Garima Nishad
- International Institute of Information Technology, Hyderabad, India
| | - Prateek Pani
- International Institute of Information Technology, Hyderabad, India
| | - Girish Varma
- International Institute of Information Technology, Hyderabad, India; Foveal Development Investigators Group
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group; Cooper Neurological Institute, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Mervyn G Thomas
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group.
| |
Collapse
|
5
|
Baraas RC, Pedersen HR, Knoblauch K, Gilson SJ. Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35113142 PMCID: PMC8819292 DOI: 10.1167/iovs.63.2.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the association between foveal shape and cone and retinal pigment epithelium (RPE) cell topographies in healthy humans. Methods Multimodal adaptive scanning light ophthalmoscopy and optical coherence tomography (OCT) were used to acquire images of foveal cones, RPE cells, and retinal layers in eyes of 23 healthy participants with normal foveas. Distributions of cone and RPE cell densities were fitted with nonlinear mixed-effects models. A linear mixed-effects model was used to examine the relationship between cone and RPE inter-cell distances and foveal shape as obtained from the OCT scans of retinal thickness. Results The best-fit model to the cone densities was a power function with a nasal–temporal asymmetry. There was a significant linear relationship among cone and RPE cell spacing, foveal shape, and foveal cell topography. The model predictions of the central 10° show that the contributions of both the cones and RPE cells are necessary to account for foveal shape. Conclusions The results indicate that there is a strong relationship between cone and RPE cell spacing and the shape of the human adolescent and adult fovea. This finding adds to the existing evidence of the critical role that the RPE serves in fetal foveal development and through adolescence, possibly via the imposition of constraints on the number and distribution of foveal cones.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Lyon, France
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
6
|
Linderman RE, Heffernan E, Ferrante S, Bachman Groth J, Carroll J. The Impact of Axial Eye Growth on Foveal Avascular Zone Measurements in Children. Optom Vis Sci 2022; 99:127-136. [PMID: 34897231 PMCID: PMC8816819 DOI: 10.1097/opx.0000000000001854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SIGNIFICANCE Foveal avascular zone (FAZ) area is a frequently used biomarker in diseases impacting the retinal vasculature in pediatric populations. Variation in axial length between individuals results in differences in lateral image scale, which affect the accuracy of FAZ area measurements. Accordingly, changes in axial length over time within individual children would affect estimates of FAZ area change. PURPOSE This study aimed to quantify how changes in axial length over time affect estimates of FAZ area change using optical coherence tomography angiography (OCT-A) images. METHODS Twenty pediatric participants (<18 years old) and 40 adult participants were imaged on Optovue's Avanti system (Fremont, CA) and had axial length measurements acquired at two time points. The FAZ was segmented twice using the OCT-A image at each time point. Foveal avascular zone area was estimated at both time points using the assumed/fixed axial length of the OCT-A device (unscaled) and using the participant's axial length (scaled). Changes in FAZ area over time were compared between the pediatric and adult groups using both unscaled and scaled data. RESULTS The average ± standard deviation follow-up time was 3.35 ± 1.66 years for the pediatric group and 2.90 ± 1.65 years for the adult group. Using unscaled data, FAZ area seemed to decrease between visits in the pediatric group (P = .004), whereas the FAZ area increased between visits in the adult group (P = .003). When correctly scaled data were used, the FAZ area still increased between visits for the adult group (P < .001), although the FAZ area no longer showed a significant change between visits for the pediatric group (P = .37). When comparing the normalized FAZ area change across visits between unscaled and scaled data, a significant difference was found between the adult and pediatric groups (P < .001). CONCLUSIONS Scaled data should be used when measuring FAZ area in pediatric populations, especially in longitudinal studies.
Collapse
Affiliation(s)
- Rachel E. Linderman
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth Heffernan
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samantha Ferrante
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jane Bachman Groth
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
7
|
Ayala GD, Linderman RE, Valenzuela RK, Woertz EN, Brilliant M, Tarima S, Carroll J. Assessing Foveal Structure in Individuals with TYR R402Q and S192Y Hypomorphic Alleles. OPHTHALMOLOGY SCIENCE 2021; 1:100077. [PMID: 36246950 PMCID: PMC9560529 DOI: 10.1016/j.xops.2021.100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 10/31/2022]
Abstract
Purpose Design Participants Methods Main Outcome Measures Results Conclusions
Collapse
|
8
|
Litts KM, Woertz EN, Wynne N, Brooks BP, Chacon A, Connor TB, Costakos D, Dumitrescu A, Drack AV, Fishman GA, Hauswirth WW, Kay CN, Lam BL, Michaelides M, Pennesi ME, Stepien KE, Strul S, Summers CG, Carroll J. Examining Whether AOSLO-Based Foveal Cone Metrics in Achromatopsia and Albinism Are Representative of Foveal Cone Structure. Transl Vis Sci Technol 2021; 10:22. [PMID: 34111268 PMCID: PMC8132001 DOI: 10.1167/tvst.10.6.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) imaging in patients with achromatopsia (ACHM) and albinism is not always successful. Here, we tested whether optical coherence tomography (OCT) measures of foveal structure differed between patients for whom AOSLO images were either quantifiable or unquantifiable. Methods The study included 166 subjects (84 with ACHM; 82 with albinism) with previously acquired OCT scans, AOSLO images, and best-corrected visual acuity (BCVA, if available). Foveal OCT scans were assessed for outer retinal structure, outer nuclear layer thickness, and hypoplasia. AOSLO images were graded as quantifiable if a peak cone density could be measured and/or usable if the location of peak density could be identified and the parafoveal mosaic was quantifiable. Results Forty-nine percent of subjects with ACHM and 57% of subjects with albinism had quantifiable AOSLO images. Older age and better BCVA were found in subjects with quantifiable AOSLO images for both ACHM (P = 0.0214 and P = 0.0276, respectively) and albinism (P = 0.0073 and P < 0.0004, respectively). There was a significant trend between ellipsoid zone appearance and ability to quantify AOSLO (P = 0.0028). In albinism, OCT metrics of cone structure did not differ between groups. Conclusions Previously reported AOSLO-based cone density measures in ACHM may not necessarily reflect the degree of remnant cone structure in these patients. Translational Relevance Until AOSLO is successful in all patients with ACHM and albinism, the possibility of the reported data from a particular cohort not being representative of the entire population remains an important issue to consider when interpreting results from AOSLO studies.
Collapse
Affiliation(s)
- Katie M Litts
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erica N Woertz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Niamh Wynne
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Alicia Chacon
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas B Connor
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deborah Costakos
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alina Dumitrescu
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Gerald A Fishman
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kimberly E Stepien
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sasha Strul
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - C Gail Summers
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|