1
|
Nnoromele PO, Adams M, Pan A, Liu YV, Wang J, Singh MS. Cell-cell interactions between transplanted retinal organoid cells and recipient tissues. Curr Opin Genet Dev 2024; 89:102277. [PMID: 39549608 DOI: 10.1016/j.gde.2024.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
The transplantation of human organoid-derived retinal cells is being studied as a potentially viable strategy to treat vision loss due to retinal degeneration. Experiments in animal models have demonstrated the feasibility of organoid-derived photoreceptor transplantation in various recipient contexts. In some cases, vision repair has been shown. However, recipient-donor cell-cell interactions are incompletely understood. This review briefly summarizes these interactions, categorizing them as synaptic structure formation, cellular component transfer, glial activation, immune cell infiltration, and cellular migration. Each of these interactions may affect the survival and functionality of the donor cells and, ultimately, their efficacy as a treatment substrate. Additionally, recipient characteristics, such as the cytoarchitecture of the retina and immune status, may also impact the type and frequency of cell-cell interactions. Despite the procedural challenges associated with culturing human retinal organoids and the technical difficulties in transplanting donor cells into the delicate recipient retina, transplantation of retinal organoid-derived cells is a promising tool for degenerative retinal disease treatment.
Collapse
Affiliation(s)
- Patrick O Nnoromele
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - McKaily Adams
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Annabelle Pan
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joyce Wang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Rajendran Nair DS, Gupta A, Iseri E, Wei T, Phuong Quach LT, Seiler MJ, Lazzi G, Thomas BB. Extrinsic electric field modulates neuronal development and increases photoreceptor population in retinal organoids. Front Neurosci 2024; 18:1438903. [PMID: 39678532 PMCID: PMC11639233 DOI: 10.3389/fnins.2024.1438903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Considering the significant role played by both intrinsic and extrinsic electric fields in the growth and maturation of the central nervous system, the impact of short exposure to external electric fields on the development and differentiation of retinal organoids was investigated. Methods Retinal organoids derived from human embryonic stem cells were used at day 80, a key stage in their differentiation. A single 60-minute exposure to a biphasic electrical field was administered to assess its influence on retinal cell populations and maturation markers. Immunohistochemistry, qPCR, and RNA sequencing were employed to evaluate cell type development and gene expression changes. Results Electrical stimulation significantly enhanced neuronal development and increased the population of photoreceptors within the organoids. RNA sequencing data showed upregulated expression of genes related to rod photoreceptors, Müller cells, horizontal cells, and amacrine cells, while genes associated with retinal pigment epithelium and retinal ganglion cells were downregulated. Variations in development and maturation were observed depending on the specific parameters of the applied electric field. Discussion These findings highlight the significant impact of extrinsic electrical fields on early retinal development and suggest that optimizing electrical field parameters could effectively address certain limitations in retinal organoid technology, potentially reducing the reliance on chemicals and small molecules.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Anika Gupta
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Ege Iseri
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Tianyuan Wei
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Le Tam Phuong Quach
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Magdalene J. Seiler
- Departments of Physical Medicine and Rehabilitation; Ophthalmology; Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Gianluca Lazzi
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Biju B. Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Wang J, Nnoromele PO, Liu YV, Johnston RJ, Singh MS. Cellular component transfer between photoreceptor cells of the retina. Prog Retin Eye Res 2024; 104:101317. [PMID: 39551387 DOI: 10.1016/j.preteyeres.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Photoreceptor transplantation is a potential therapeutic strategy for degenerative retinal diseases. Studies on mechanisms contributing to retinal regeneration and vision repair identified cellular components transfer (CCT) as playing a role, in addition to somatic augmentation (referred to as "cell replacement" in this paper). In CCT, donor photoreceptors shuttle proteins, RNA, and mitochondria to host photoreceptors through intercellular connections. The discovery of CCT in the transplantation context triggered a re-interpretation of prior transplantation studies that generally did not include specific CCT assays and thereby broadly emphasized the cell replacement model, reflecting the prevailing understanding of retinal transplantation biology at that time. In addition to clarifying our understanding of photoreceptor biology, CCT has raised the possibility of developing treatments to replenish molecular deficiencies in diseased photoreceptor cells. As the CCT field evolves, investigators have used diverse terminology, and implemented different CCT assays following transplantation in animal models. The non-standardized terminology of CCT and absent minimal assay standards for detection can hinder communication between investigators and comparison between studies. In this review, we discuss the current understanding of CCT, provide an overview of transplantation and regeneration studies in small and large animals, and propose terminology and a minimal assay standard for CCT. Further research on CCT may eventually provide new avenues to treat a range of hereditary and acquired retinopathies while illuminating mechanisms of cell-cell interaction in the retina.
Collapse
Affiliation(s)
- Joyce Wang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick O Nnoromele
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying V Liu
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Robert J Johnston
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Sen S, de Guimaraes TAC, Filho AG, Fabozzi L, Pearson RA, Michaelides M. Stem cell-based therapies for retinal diseases: focus on clinical trials and future prospects. Ophthalmic Genet 2024:1-14. [PMID: 39544140 DOI: 10.1080/13816810.2024.2423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based therapy has gained importance over the past decades due to huge advances in science and technology behind the generation and directed differentiation of pluripotent cells from embryos and adult cells. Preclinical proof-of-concept studies have been followed by clinical trials showing efficacy and safety of transplantation of stem cell-based therapy, which are beginning to establish this as a modality of treatment. Disease candidates of interest are primarily conditions that may benefit from replacing dead or dying cells, including advanced inherited retinal dystrophies and age-related macular degeneration, and predominantly seek to transplant either RPE or photoreceptors, although neurotrophic approaches have also been trialed. Whilst a consensus has yet to be reached about the best stage/type of cells for transplantation (stem cells, progenitor cells, differentiated RPE and photoreceptors) and the methods of implantation (sheet, suspension), several CTs have shown safety. There remain potential concerns regarding tumorigenicity and immune rejection; however, with ongoing improvements in cell generation, selection, and delivery, these can be minimized. Earlier studies showed efficacy with immunosuppressive drugs to prevent rejection, and recent donor-matched transplants have avoided the need for immunosuppression. Retinal regenerative medicine is a challenging field and is in a nascent stage but holds tremendous promise. This narrative review delves into the current understanding of stem cells and the latest clinical trials of retinal cell transplantation.
Collapse
Affiliation(s)
- Sagnik Sen
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Rachael A Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Michel Michaelides
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
5
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10802-7. [PMID: 39422807 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
7
|
Babighian S, Zanella MS, Gattazzo I, Galan A, Gagliano C, D'Esposito F, Zeppieri M. Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39259423 DOI: 10.1007/5584_2024_819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Caterina Gagliano
- Eye Clinic Catania University San Marco Hospital, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, EN, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
8
|
Tian Z, Liu Q, Lin HY, Zhu YR, Ling L, Sung TC, Wang T, Li W, Gao M, Cheng S, Renuka RR, Subbiah SK, Fan G, Wu GJ, Higuchi A. Effects of ECM protein-coated surfaces on the generation of retinal pigment epithelium cells differentiated from human pluripotent stem cells. Regen Biomater 2024; 11:rbae091. [PMID: 39233867 PMCID: PMC11374035 DOI: 10.1093/rb/rbae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hui-Yu Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
| | - Yu-Ru Zhu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
| | - Ling Ling
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wanqi Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sitian Cheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Suresh Kumar Subbiah
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, China
| |
Collapse
|
9
|
Lan X, Jiang H, Wang Q, Shiqi Q, Xiong Y. The application of retinal organoids in ophthalmic regenerative medicine: A mini-review. Regen Ther 2024; 26:382-386. [PMID: 39050551 PMCID: PMC11266866 DOI: 10.1016/j.reth.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Retinal organoids are three-dimensional (3D) microscopic tissues that are induced and differentiated from stem cells or progenitor cells in vitro and have a highly similar structure to the retina. With the optimization and development of 3D retinal culture system and the improvement of induced differentiation technology, retinal organoids have broad application prospects in retinal development, regenerative medicine, biomaterial evaluation, disease mechanism investigation, and drug screening. In this review we summarize recent development of retinal organoids and their applications in ophthalmic regenerative medicine. In particular, we highlight the promise and challenges in the use of retinal organoids in disease modeling and drug discovery.
Collapse
Affiliation(s)
| | | | - Qian Wang
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qin Shiqi
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yu Xiong
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| |
Collapse
|
10
|
Ashworth KE, Weisbrod J, Ballios BG. Inherited Retinal Diseases and Retinal Organoids as Preclinical Cell Models for Inherited Retinal Disease Research. Genes (Basel) 2024; 15:705. [PMID: 38927641 PMCID: PMC11203130 DOI: 10.3390/genes15060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a large group of genetically and clinically diverse blinding eye conditions that result in progressive and irreversible photoreceptor degeneration and vision loss. To date, no cures have been found, although strides toward treatments for specific IRDs have been made in recent years. To accelerate treatment discovery, retinal organoids provide an ideal human IRD model. This review aims to give background on the development and importance of retinal organoids for the human-based in vitro study of the retina and human retinogenesis and retinal pathologies. From there, we explore retinal pathologies in the context of IRDs and the current landscape of IRD treatment discovery. We discuss the usefulness of retinal organoids in this context (as a patient-derived cell model for IRDs) to precisely understand the pathogenesis and potential mechanisms behind a specific IRD-causing variant of interest. Finally, we discuss the importance and promise of retinal organoids in treatment discovery for IRDs, now and in the future.
Collapse
Affiliation(s)
- Kristen E. Ashworth
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Jessica Weisbrod
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Brian G. Ballios
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| |
Collapse
|
11
|
Lin B, Singh RK, Seiler MJ, Nasonkin IO. Survival and Functional Integration of Human Embryonic Stem Cell-Derived Retinal Organoids After Shipping and Transplantation into Retinal Degeneration Rats. Stem Cells Dev 2024; 33:201-213. [PMID: 38390839 PMCID: PMC11250834 DOI: 10.1089/scd.2023.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.
Collapse
Affiliation(s)
- Bin Lin
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | | - Magdalene J. Seiler
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | |
Collapse
|
12
|
Stino H, Niederleithner M, Iby J, Sedova A, Schlegl T, Steiner I, Sacu S, Drexler W, Schmoll T, Leitgeb R, Schmidt-Erfurth UM, Pollreisz A. Detection of diabetic neovascularisation using single-capture 65°-widefield optical coherence tomography angiography. Br J Ophthalmol 2023; 108:91-97. [PMID: 36376062 PMCID: PMC10804012 DOI: 10.1136/bjo-2022-322134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
AIM To assess the detection rate of retinal neovascularisation (NV) in eyes with proliferative diabetic retinopathy (PDR) using widefield optical coherence tomography angiography (WF-OCTA) in comparison to ultrawidefield fluorescein angiography (UWF-FA). METHODS Single-capture 65°-WF-OCTA-imaging was performed in patients with NV at the disc or elsewhere (NVE) detected on UWF-FA using a modified PlexElite system and B-scans were examined for blood flow signals breaching the internal limiting membrane. Sensitivity of WF-OCTA and UWF colour fundus (UWF-CF) photography for correct diagnosis of PDR was determined and interdevice agreement (Fleiss' κ) between WF-OCTA and UWF-FA for detection of NV in the total gradable area and each retinal quadrant was evaluated. RESULTS Fifty-nine eyes of 41 patients with PDR detected on UWF-FA were included. Sensitivity of detecting PDR on WF-OCTA scans was 0.95 in contrast to 0.78 on UWF-CF images. Agreement in detecting NVE between WF-OCTA and UWF-FA was high in the superotemporal (κ=0.98) and inferotemporal (κ=0.94) and weak in the superonasal (κ=0.24) and inferonasal quadrants (κ=0.42). On UWF-FA, 63% of NVEs (n=153) were located in the temporal quadrants with 93% (n=142) of them being detected on WF-OCTA scans. CONCLUSION The high reliability of non-invasive WF-OCTA imaging in detecting PDR can improve clinical examination with the potential to replace FA as a single diagnostic tool.
Collapse
Affiliation(s)
- Heiko Stino
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Michael Niederleithner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johannes Iby
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Aleksandra Sedova
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Thomas Schlegl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Irene Steiner
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Stefan Sacu
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Tilman Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Carl Zeiss Meditec Inc, Dublin, California, USA
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Liu Q, Liu J, Guo M, Sung TC, Wang T, Yu T, Tian Z, Fan G, Wu W, Higuchi A. Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model. J Transl Med 2023; 21:910. [PMID: 38098048 PMCID: PMC10720187 DOI: 10.1186/s12967-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Retinal degeneration (RD) is a group of disorders on irreversible vision loss. Multiple types of stem cells were used in clinical trials for RD treatment. However, it remains unknown what kinds of stem cells are most effective for the treatment. Therefore, we investigated the subretinal transplantation of several types of stem cells, human adipose-derived stem cells (hADSCs), amniotic fluid stem cells (hAFSCs), bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), induced pluripotent stem cell (hiPSC), and hiPSC-derived retinal pigment epithelium (RPE) cells for protection effects, paracrine effects and treatment efficiency in an RD disease model rats. METHODS The generation and characterization of these stem cells and hiPSC-derived RPE cells were performed before transplantation. The stem cells or hiPSC-derived RPE cell suspension labelled with CellTracker Green to detect transplanted cells were delivered into the subretinal space of 3-week-old RCS rats. The control group received subretinal PBS injection or non-injection. A series of detections including fundus photography, optomotor response (OMR) evaluations, light-dark box testing, electroretinography (ERG), and hematoxylin and eosin (HE) staining of retinal sections were conducted after subretinal injection of the cells. RESULTS Each stem cell, hiPSC-derived RPE cell or PBS (blank experiment) was successfully transplanted into at least six RCS rats subretinally. Compared with the control rats, RCS rats subjected to subretinal transplantation of any stem cells except hiPSCs showed higher ERG waves (p < 0.05) and quantitative OMR (qOMR) index values (hADSCs: 1.166, hAFSCs: 1.249, hBMSCs: 1.098, hDPSCs: 1.238, hiPSCs: 1.208, hiPSC-RPE cells: 1.294, non-injection: 1.03, PBS: 1.06), which indicated better visual function, at 4 weeks post-injection. However, only rats that received hiPSC-derived RPE cells maintained their visual function at 8 weeks post-injection (p < 0.05). The outer nuclear layer thickness observed in histological sections after HE staining showed the same pattern as the ERG and qOMR results. CONCLUSIONS Compared to hiPSC-derived RPE cells, adult and fetal stem cells yielded improvements in visual function for up to 4 weeks post-injection; this outcome was mainly based on the paracrine effects of several types of growth factors secreted by the stem cells. Patients with RD will benefit from the stem cell therapy.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Minmei Guo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan.
| |
Collapse
|
14
|
Risner ML, Ribeiro M, McGrady NR, Kagitapalli BS, Chamling X, Zack DJ, Calkins DJ. Neutral sphingomyelinase inhibition promotes local and network degeneration in vitro and in vivo. Cell Commun Signal 2023; 21:305. [PMID: 37904133 PMCID: PMC10614343 DOI: 10.1186/s12964-023-01291-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology. Our understanding of pathologic intercellular signaling has been bolstered by disease models using neurons derived from human pluripotent stems cells (hPSC). METHODS Here, we used hPSC-derived retinal ganglion cells (hRGC) and the mouse visual system to investigate the influence of modulating EV generation on intercellular trafficking and cell survival. We probed the impact of EV modulation on cell survival by decreasing the catabolism of sphingomyelin into ceramide through inhibition of neutral sphingomyelinase (nSMase), using GW4869. We assayed for cell survival in vitro by probing for annexin A5, phosphatidylserine, viable mitochondria, and mitochondrial reactive oxygen species. In vivo, we performed intraocular injections of GW4869 and measured RGC and superior colliculus neuron density and RGC anterograde axon transport. RESULTS Following twenty-four hours of dosing hRGCs with GW4869, we found that inhibition of nSMase decreased ceramide and enhanced GM1 ganglioside accumulation. This inhibition also reduced the density of small EVs, increased the density of large EVs, and enriched the pro-apoptotic protein, annexin A5. Reducing nSMase activity increased hRGC apoptosis initiation due to enhanced density and uptake of apoptotic particles, as identified by the annexin A5 binding phospholipid, phosphatidylserine. We assayed intercellular trafficking of mitochondria by developing a coculture system of GW4869-treated and naïve hRGCs. In treated cells, inhibition of nSMase reduced the number of viable mitochondria, while driving mitochondrial reactive oxygen species not only in treated, but also in naive hRGCs added in coculture. In mice, 20 days following a single intravitreal injection of GW4869, we found a significant loss of RGCs and their axonal recipient neurons in the superior colliculus. This followed a more dramatic reduction in anterograde RGC axon transport to the colliculus. CONCLUSION Overall, our data suggest that perturbing the physiologic catabolism of sphingomyelin by inhibiting nSMase reorganizes plasma membrane associated sphingolipids, alters the profile of neuron-generated EVs, and promotes neurodegeneration in vitro and in vivo by shifting the balance of pro-survival versus -degenerative EVs. Video Abstract.
Collapse
Affiliation(s)
- Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA.
- Department of Foundational Medical Studies, Eye Research Center, Oakland University William Beaumont School of Medicine, 369 Dodge Hall, 118 Library Dr., Rochester, MI, 48309, USA.
| | - Marcio Ribeiro
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Bhanu S Kagitapalli
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA.
| |
Collapse
|
15
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
16
|
Patel SH, Lamba DA. Factors Affecting Stem Cell-Based Regenerative Approaches in Retinal Degeneration. Annu Rev Vis Sci 2023; 9:155-175. [PMID: 37713278 DOI: 10.1146/annurev-vision-120222-012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Inherited and age-associated vision loss is often associated with degeneration of the cells of the retina, the light-sensitive layer at the back of the eye. The mammalian retina, being a postmitotic neural tissue, does not have the capacity to repair itself through endogenous regeneration. There has been considerable excitement for the development of cell replacement approaches since the isolation and development of culture methods for human pluripotent stem cells, as well as the generation of induced pluripotent stem cells. This has now been combined with novel three-dimensional organoid culture systems that closely mimic human retinal development in vitro. In this review, we cover the current state of the field, with emphasis on the cell delivery challenges, role of the recipient immunological microenvironment, and challenges related to connectivity between transplanted cells and host circuitry both locally and centrally to the different areas of the brain.
Collapse
Affiliation(s)
- Sachin H Patel
- Department of Ophthalmology, University of California, San Francisco, California, USA;
| | - Deepak A Lamba
- Department of Ophthalmology, University of California, San Francisco, California, USA;
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, San Francisco, California, USA
| |
Collapse
|
17
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
18
|
Voisin A, Pénaguin A, Gaillard A, Leveziel N. Stem cell therapy in retinal diseases. Neural Regen Res 2023; 18:1478-1485. [PMID: 36571345 PMCID: PMC10075102 DOI: 10.4103/1673-5374.361537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness. Despite intensive research in the field of retinal disorders, there is currently no curative treatment. Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development. In the context of cell-based therapies, different cell sources such as embryonic stem cells, induced pluripotent stem cells, or multipotent stem cells can be used for transplantation. In the vast majority of human clinical trials, retinal pigment epithelial cells and photoreceptors are the cell types considered for replacement cell therapies. In this review, we summarize the progress made in stem cell therapies ranging from the pre-clinical studies to clinical trials for retinal disease.
Collapse
Affiliation(s)
- Audrey Voisin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| | - Amaury Pénaguin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers; Laboratoires Thea, Clermont-Ferrand, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, Poitiers, France
| | - Nicolas Leveziel
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084; Department of Ophthalmology, CHU Poitiers, Poitiers, France
| |
Collapse
|
19
|
Kang J, Gong J, Yang C, Lin X, Yan L, Gong Y, Xu H. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev Rep 2023:10.1007/s12015-023-10553-x. [PMID: 37269529 DOI: 10.1007/s12015-023-10553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.
Collapse
Affiliation(s)
- Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lijuan Yan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
20
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
21
|
Bohrer LR, Stone NE, Mullin NK, Voigt AP, Anfinson KR, Fick JL, Luangphakdy V, Hittle B, Powell K, Muschler GF, Mullins RF, Stone EM, Tucker BA. Automating iPSC generation to enable autologous photoreceptor cell replacement therapy. J Transl Med 2023; 21:161. [PMID: 36855199 PMCID: PMC9976478 DOI: 10.1186/s12967-023-03966-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Inherited retinal degeneration is a leading cause of incurable vision loss in the developed world. While autologous iPSC mediated photoreceptor cell replacement is theoretically possible, the lack of commercially available technologies designed to enable high throughput parallel production of patient specific therapeutics has hindered clinical translation. METHODS In this study, we describe the use of the Cell X precision robotic cell culture platform to enable parallel production of clinical grade patient specific iPSCs. The Cell X is housed within an ISO Class 5 cGMP compliant closed aseptic isolator (Biospherix XVivo X2), where all procedures from fibroblast culture to iPSC generation, clonal expansion and retinal differentiation were performed. RESULTS Patient iPSCs generated using the Cell X platform were determined to be pluripotent via score card analysis and genetically stable via karyotyping. As determined via immunostaining and confocal microscopy, iPSCs generated using the Cell X platform gave rise to retinal organoids that were indistinguishable from organoids derived from manually generated iPSCs. In addition, at 120 days post-differentiation, single-cell RNA sequencing analysis revealed that cells generated using the Cell X platform were comparable to those generated under manual conditions in a separate laboratory. CONCLUSION We have successfully developed a robotic iPSC generation platform and standard operating procedures for production of high-quality photoreceptor precursor cells that are compatible with current good manufacturing practices. This system will enable clinical grade production of iPSCs for autologous retinal cell replacement.
Collapse
Affiliation(s)
- Laura R Bohrer
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nicholas E Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathaniel K Mullin
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew P Voigt
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kristin R Anfinson
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica L Fick
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Viviane Luangphakdy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cell X Technologies Inc, Cleveland, OH, USA
| | - Bradley Hittle
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Kimerly Powell
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - George F Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA.
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
22
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
23
|
Watari K, Yamasaki S, Tu HY, Shikamura M, Kamei T, Adachi H, Tochitani T, Kita Y, Nakamura A, Ueyama K, Ono K, Morinaga C, Matsuyama T, Sho J, Nakamura M, Fujiwara M, Hori Y, Tanabe A, Hirai R, Terai O, Ohno O, Ohara H, Hayama T, Ikeda A, Nukaya D, Matsushita K, Takahashi M, Kishino A, Kimura T, Kawamata S, Mandai M, Kuwahara A. Self-organization, quality control, and preclinical studies of human iPSC-derived retinal sheets for tissue-transplantation therapy. Commun Biol 2023; 6:164. [PMID: 36765170 PMCID: PMC9918541 DOI: 10.1038/s42003-023-04543-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Three-dimensional retinal organoids (3D-retinas) are a promising graft source for transplantation therapy. We previously developed self-organizing culture for 3D-retina generation from human pluripotent stem cells (hPSCs). Here we present a quality control method and preclinical studies for tissue-sheet transplantation. Self-organizing hPSCs differentiated into both retinal and off-target tissues. Gene expression analyses identified the major off-target tissues as eye-related, cortex-like, and spinal cord-like tissues. For quality control, we developed a qPCR-based test in which each hPSC-derived neuroepithelium was dissected into two tissue-sheets: inner-central sheet for transplantation and outer-peripheral sheet for qPCR to ensure retinal tissue selection. During qPCR, tissue-sheets were stored for 3-4 days using a newly developed preservation method. In a rat tumorigenicity study, no transplant-related adverse events were observed. In retinal degeneration model rats, retinal transplants differentiated into mature photoreceptors and exhibited light responses in electrophysiology assays. These results demonstrate our rationale toward self-organizing retinal sheet transplantation therapy.
Collapse
Affiliation(s)
- Kenji Watari
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Suguru Yamasaki
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan ,grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Hung-Ya Tu
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Masayuki Shikamura
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Tatsuya Kamei
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Hideki Adachi
- grid.417741.00000 0004 1797 168XPreclinical Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Konohana-ku, Osaka 554-0022 Japan
| | - Tomoaki Tochitani
- grid.417741.00000 0004 1797 168XPreclinical Research Unit, Research Division, Sumitomo Pharma Co., Ltd., Konohana-ku, Osaka 554-0022 Japan
| | - Yasuyuki Kita
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Aya Nakamura
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Kazuki Ueyama
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Keiichi Ono
- grid.417741.00000 0004 1797 168XTechnology Research & Development Division, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Chikako Morinaga
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan ,grid.7597.c0000000094465255RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198 Japan
| | - Take Matsuyama
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Junki Sho
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Miyuki Nakamura
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Masayo Fujiwara
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Yoriko Hori
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Anna Tanabe
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Rina Hirai
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Orie Terai
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Osamu Ohno
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Hidetaka Ohara
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Tetsuya Hayama
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Atsushi Ikeda
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Daiki Nukaya
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Keizo Matsushita
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan ,grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Masayo Takahashi
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan
| | - Akiyoshi Kishino
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Toru Kimura
- grid.417741.00000 0004 1797 168XRegenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047 Japan
| | - Shin Kawamata
- grid.417982.10000 0004 0623 246XResearch & Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation at Kobe, Chuo-ku, Kobe 650-0047 Japan
| | - Michiko Mandai
- grid.508743.dLaboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047 Japan ,grid.7597.c0000000094465255RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN Cluster for Science, Technology and Innovation Hub., Saitama, 351-0198 Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
24
|
Abstract
Inherited ocular diseases comprise a heterogeneous group of rare and complex diseases, including inherited retinal diseases (IRDs) and inherited optic neuropathies. Recent success in adeno-associated virus-based gene therapy, voretigene neparvovec (Luxturna®) for RPE65-related IRDs, has heralded rapid evolution in gene therapy platform technologies and strategies, from gene augmentation to RNA editing, as well as gene agnostic approaches such as optogenetics. This review discusses the fundamentals underlying the mode of inheritance, natural history studies and clinical trial outcomes, as well as current and emerging therapies covering gene therapy strategies, cell-based therapies and bionic vision.
Collapse
Affiliation(s)
- Hwei Wuen Chan
- Department of Ophthalmology, National University Hospital, Singapore,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Correspondence: Dr Hwei Wuen Chan, Assistant Professor, Department of Ophthalmology (Eye), Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 7, 119228, Singapore. E-mail:
| | - Jaslyn Oh
- Department of Ophthalmology, National University Hospital, Singapore
| | - Bart Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium,Department of Head and Skin, Ghent University, Ghent, Belgium,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
25
|
Re-formation of synaptic connectivity in dissociated human stem cell-derived retinal organoid cultures. Proc Natl Acad Sci U S A 2023; 120:e2213418120. [PMID: 36598946 PMCID: PMC9926218 DOI: 10.1073/pnas.2213418120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human pluripotent stem cell (hPSC)-derived retinal organoids (ROs) can efficiently and reproducibly generate retinal neurons that have potential for use in cell replacement strategies [Capowski et al., Development 146, dev171686 (2019)]. The ability of these lab-grown retinal neurons to form new synaptic connections after dissociation from ROs is key to building confidence in their capacity to restore visual function. However, direct evidence of reestablishment of retinal neuron connectivity via synaptic tracing has not been reported to date. The present study employs an in vitro, rabies virus-based, monosynaptic retrograde tracing assay [Wickersham et al., Neuron 53, 639-647 (2007); Sun et al., Mol. Neurodegener. 14, 8 (2019)] to identify de novo synaptic connections among early retinal cell types following RO dissociation. A reproducible, high-throughput approach for labeling and quantifying traced retinal cell types was developed. Photoreceptors and retinal ganglion cells-the primary neurons of interest for retinal cell replacement-were the two major contributing populations among the traced presynaptic cells. This system provides a platform for assessing synaptic connections in cultured retinal neurons and sets the stage for future cell replacement studies aimed at characterizing or enhancing synaptogenesis. Used in this manner, in vitro synaptic tracing is envisioned to complement traditional preclinical animal model testing, which is limited by evolutionary incompatibilities in synaptic machinery inherent to human xenografts.
Collapse
|
26
|
Cheng L, Kuehn MH. Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. Handb Exp Pharmacol 2023; 281:157-187. [PMID: 37608005 PMCID: PMC11631198 DOI: 10.1007/164_2023_691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Human embryonic stem cells (hESCs)- and induced pluripotent stem cells (hiPSCs)-derived retinal organoids (ROs) are three-dimensional laminar structures that recapitulate the developmental trajectory of the human retina. The ROs provide a fascinating tool for basic science research, eye disease modeling, treatment development, and biobanking for tissue/cell replacement. Here we review the previous studies that paved the way for RO technology, the two most widely accepted, standardized protocols to generate ROs, and the utilization of ROs in medical discovery. This review is conducted from the perspective of basic science research, transplantation for regenerative medicine, disease modeling, and therapeutic development for drug screening and gene therapy. ROs have opened avenues for new technologies such as assembloids, coculture with other organoids, vasculature or immune cells, microfluidic devices (organ-on-chip), extracellular vesicles for drug delivery, biomaterial engineering, advanced imaging techniques, and artificial intelligence (AI). Nevertheless, some shortcomings of ROs currently limit their translation for medical applications and pose a challenge for future research. Despite these limitations, ROs are a powerful tool for functional studies and therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA.
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
27
|
Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev 2023; 43:31-54. [PMID: 35993813 DOI: 10.1002/med.21922] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Thanks to progress in the development of three-dimensional (3D) culture technologies, human central nervous system (CNS) development and diseases have been gradually deciphered by using organoids derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). Selforganized neural organoids (NOs) have been used to mimic morphogenesis and functions of specific organs in vitro. Many NOs have been reproduced in vitro, such as those mimicking the human brain, retina, and spinal cord. However, NOs fail to capitulate to the maturation and complexity of in vivo neural tissues. The persistent issues with current NO cultivation protocols are inadequate oxygen supply and nutrient diffusion due to the absence of vascular networks. In vivo, the developing CNS is interpenetrated by vasculature that not only supplies oxygen and nutrients but also provides a structural template for neuronal growth. To address these deficiencies, recent studies have begun to couple NO culture with bioengineering techniques and methodologies, including genetic engineering, coculture, multidifferentiation, microfluidics and 3D bioprinting, and transplantation, which might promote NO maturation and create more functional NOs. These cutting-edge methods could generate an ever more reliable NO model in vitro for deciphering the codes of human CNS development, disease progression, and translational application. In this review, we will summarize recent technological advances in culture strategies to generate vascularized NOs (vNOs), with a special focus on cerebral- and retinal-organoid models.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
28
|
Onyak JR, Vergara MN, Renna JM. Retinal organoid light responsivity: current status and future opportunities. Transl Res 2022; 250:98-111. [PMID: 35690342 DOI: 10.1016/j.trsl.2022.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
The ability to generate human retinas in vitro from pluripotent stem cells opened unprecedented opportunities for basic science and for the development of therapeutic approaches for retinal degenerative diseases. Retinal organoid models not only mimic the histoarchitecture and cellular composition of the native retina, but they can achieve a remarkable level of maturation that allows them to respond to light stimulation. However, studies evaluating the nature, magnitude, and properties of light-evoked responsivity from each cell type, in each retinal organoid layer, have been sparse. In this review we discuss the current understanding of retinal organoid function, the technologies used for functional assessment in human retinal organoids, and the challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
| | - M Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado.
| | - Jordan M Renna
- Department of Biology, The University of Akron, Akron, Ohio.
| |
Collapse
|
29
|
Xue Y, Lin B, Chen JT, Tang WC, Browne AW, Seiler MJ. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:314-327. [PMID: 36041146 PMCID: PMC9966053 DOI: 10.1097/apo.0000000000000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach to restoring vision. This paper reviews the current status and explores future prospects of the transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This review summarizes the status of rodent RD disease models and discusses RO culture and analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs from pluripotent stem cells have significantly improved and become more efficient in recent years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. However, opportunity remains to optimize tissue differentiation protocols and achieve better RO reproducibility. In order to screen high-quality ROs for downstream applications, approaches such as noninvasive and label-free imaging and electrophysiological functional testing are promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed improvements in visual function in several RD models, showing promises for clinical applications in the future.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, CA
- Stem Cell Research Center, University of California, Irvine, CA
| | - Bin Lin
- Stem Cell Research Center, University of California, Irvine, CA
| | - Jacqueline T. Chen
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
| | - William C. Tang
- Biomedical Engineering, University of California, Irvine, CA
| | - Andrew W. Browne
- Biomedical Engineering, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Institute for Clinical and Translational Science, University of California, Irvine, CA
| | - Magdalene J. Seiler
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA
| |
Collapse
|
30
|
Fei K, Zhang J, Yuan J, Xiao P. Present Application and Perspectives of Organoid Imaging Technology. Bioengineering (Basel) 2022; 9:121. [PMID: 35324810 PMCID: PMC8945799 DOI: 10.3390/bioengineering9030121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022] Open
Abstract
An organoid is a miniaturized and simplified in vitro model with a similar structure and function to a real organ. In recent years, the use of organoids has increased explosively in the field of growth and development, disease simulation, drug screening, cell therapy, etc. In order to obtain necessary information, such as morphological structure, cell function and dynamic signals, it is necessary and important to directly monitor the culture process of organoids. Among different detection technologies, imaging technology is a simple and convenient choice and can realize direct observation and quantitative research. In this review, the principle, advantages and disadvantages of imaging technologies that have been applied in organoids research are introduced. We also offer an overview of prospective technologies for organoid imaging. This review aims to help biologists find appropriate imaging techniques for different areas of organoid research, and also contribute to the development of organoid imaging systems.
Collapse
Affiliation(s)
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (K.F.); (J.Z.)
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (K.F.); (J.Z.)
| |
Collapse
|
31
|
Morikawa S, Okamoto F, Murakami T, Sugiura Y, Hiraoka T, Okamoto Y, Oshika T. Relationship between stereopsis and vision-related quality of life in patients with branch retinal vein occlusion. BMJ Open Ophthalmol 2022; 7:e000925. [PMID: 35321212 PMCID: PMC8896036 DOI: 10.1136/bmjophth-2021-000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background To investigate the relationship between stereopsis and vision-related quality of life (VR-QOL) in patients with branch retinal vein occlusion (BRVO) before and after treatment with intravitreal ranibizumab (IVR). Methods This prospective multicentred observational study included 37 patients undergoing IVR treatment for unilateral BRVO and 24 age-matched healthy controls. Stereopsis was evaluated using the TNO stereo test (TNO) and Titmus stereo test (TST) every month, and the 25-item National Eye Institute Visual Function Questionnaire (VFQ-25) was administered at baseline, then at 3, 6 and 12 months after treatment. Results Time course of the changes in stereopsis and VR-QOL. IVR treatment significantly reduced central fovea thickness and improved both the TNO and the TST from 2 to 12 months (both p<0.05). Stereopsis before and after IVR injection in the eyes with BRVO were significantly worse than those in control subjects (TNO, p<0.001; TST, p<0.001). The VFQ-25 composite score significantly improved from 3 to 12 months after IVR treatment (p<0.05). Univariate analysis showed that the TNO score at baseline was significantly correlated with the VFQ-25 composite score at baseline and after treatment (p<0.05, p<0.05, respectively). TST score was not associated with the VFQ-25 composite score at baseline or after treatment. Conclusions Treatment with IVR for BRVO improved cystoid macular oedema, which was correlated to improved stereopsis, although not to the control level. The TNO score at baseline was associated with VR-QOL in patients with BRVO.
Collapse
Affiliation(s)
- Shohei Morikawa
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fumiki Okamoto
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoya Murakami
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Sugiura
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takahiro Hiraoka
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
32
|
Han IC, Bohrer LR, Gibson-Corley KN, Wiley LA, Shrestha A, Harman BE, Jiao C, Sohn EH, Wendland R, Allen BN, Worthington KS, Mullins RF, Stone EM, Tucker BA. Biocompatibility of Human Induced Pluripotent Stem Cell-Derived Retinal Progenitor Cell Grafts in Immunocompromised Rats. Cell Transplant 2022; 31:9636897221104451. [PMID: 35758274 PMCID: PMC9247396 DOI: 10.1177/09636897221104451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Loss of photoreceptor cells is a primary feature of inherited retinal degenerative disorders including age-related macular degeneration and retinitis pigmentosa. To restore vision in affected patients, photoreceptor cell replacement will be required. The ideal donor cells for this application are induced pluripotent stem cells (iPSCs) because they can be derived from and transplanted into the same patient obviating the need for long-term immunosuppression. A major limitation for retinal cell replacement therapy is donor cell loss associated with simple methods of cell delivery such as subretinal injections of bolus cell suspensions. Transplantation with supportive biomaterials can help maintain cellular integrity, increase cell survival, and encourage proper cellular alignment and improve integration with the host retina. Using a pig model of retinal degeneration, we recently demonstrated that polycaprolactone (PCL) scaffolds fabricated with two photon lithography have excellent local and systemic tolerability. In this study, we describe rapid photopolymerization-mediated production of PCL-based bioabsorbable scaffolds, a technique for loading iPSC-derived retinal progenitor cells onto the scaffold, methods of surgical transplantation in an immunocompromised rat model and tolerability of the subretinal grafts at 1, 3, and 6 months of follow-up (n = 150). We observed no local or systemic toxicity, nor did we observe any tumor formation despite extensive clinical evaluation, clinical chemistry, hematology, gross tissue examination and detailed histopathology. Demonstrating the local and systemic compatibility of biodegradable scaffolds carrying human iPSC-derived retinal progenitor cells is an important step toward clinical safety trials of this approach in humans.
Collapse
Affiliation(s)
- Ian C Han
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Laura R Bohrer
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Luke A Wiley
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Arwin Shrestha
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Brynnon E Harman
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chunhua Jiao
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Elliott H Sohn
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rion Wendland
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Brittany N Allen
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Kristan S Worthington
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
33
|
Xue Y, Browne AW, Tang WC, Delgado J, McLelland BT, Nistor G, Chen JT, Chew K, Lee N, Keirstead HS, Seiler MJ. Retinal Organoids Long-Term Functional Characterization Using Two-Photon Fluorescence Lifetime and Hyperspectral Microscopy. Front Cell Neurosci 2021; 15:796903. [PMID: 34955757 PMCID: PMC8707055 DOI: 10.3389/fncel.2021.796903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cell-derived organoid technologies have opened avenues to preclinical basic science research, drug discovery, and transplantation therapy in organ systems. Stem cell-derived organoids follow a time course similar to species-specific organ gestation in vivo. However, heterogeneous tissue yields, and subjective tissue selection reduce the repeatability of organoid-based scientific experiments and clinical studies. To improve the quality control of organoids, we introduced a live imaging technique based on two-photon microscopy to non-invasively monitor and characterize retinal organoids’ (RtOgs’) long-term development. Fluorescence lifetime imaging microscopy (FLIM) was used to monitor the metabolic trajectory, and hyperspectral imaging was applied to characterize structural and molecular changes. We further validated the live imaging experimental results with endpoint biological tests, including quantitative polymerase chain reaction (qPCR), single-cell RNA sequencing, and immunohistochemistry. With FLIM results, we analyzed the free/bound nicotinamide adenine dinucleotide (f/b NADH) ratio of the imaged regions and found that there was a metabolic shift from glycolysis to oxidative phosphorylation. This shift occurred between the second and third months of differentiation. The total metabolic activity shifted slightly back toward glycolysis between the third and fourth months and stayed relatively stable between the fourth and sixth months. Consistency in organoid development among cell lines and production lots was examined. Molecular analysis showed that retinal progenitor genes were expressed in all groups between days 51 and 159. Photoreceptor gene expression emerged around the second month of differentiation, which corresponded to the shift in the f/b NADH ratio. RtOgs between 3 and 6 months of differentiation exhibited photoreceptor gene expression levels that were between the native human fetal and adult retina gene expression levels. The occurrence of cone opsin expression (OPN1 SW and OPN1 LW) indicated the maturation of photoreceptors in the fourth month of differentiation, which was consistent with the stabilized level of f/b NADH ratio starting from 4 months. Endpoint single-cell RNA and immunohistology data showed that the cellular compositions and lamination of RtOgs at different developmental stages followed those in vivo.
Collapse
Affiliation(s)
- Yuntian Xue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Andrew W Browne
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, United States
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Delgado
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | | | | | - Jacqueline T Chen
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Kaylee Chew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Nicolas Lee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | | | - Magdalene J Seiler
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
34
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
35
|
Boguslawski J, Palczewska G, Tomczewski S, Milkiewicz J, Kasprzycki P, Stachowiak D, Komar K, Marzejon MJ, Sikorski BL, Hudzikowski A, Głuszek A, Łaszczych Z, Karnowski K, Soboń G, Palczewski K, Wojtkowski M. In vivo imaging of the human eye using a two-photon excited fluorescence scanning laser ophthalmoscope. J Clin Invest 2021; 132:154218. [PMID: 34847075 PMCID: PMC8759795 DOI: 10.1172/jci154218] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Noninvasive assessment of metabolic processes that sustain regeneration of human retinal visual pigments (visual cycle) is essential to improve ophthalmic diagnostics and to accelerate development of new treatments to counter retinal diseases. Fluorescent vitamin A derivatives, which are the chemical intermediates of these processes, are highly sensitive to UV light; thus, safe analyses of these processes in humans are currently beyond the reach of even the most modern ocular imaging modalities. METHODS We present a compact fluorescence scanning laser ophthalmoscope (TPEF-SLO) and spectrally resolved images of the human retina based on two-photon excitation (TPE) with near-infrared (IR) light. A custom Er:fiber laser with integrated pulse selection, along with intelligent post-processing of data, enables excitation with low laser power and precise measurement of weak signals. RESULTS We demonstrate spectrally resolved TPE fundus images of human subjects. Comparison of TPE data between human and mouse models of retinal diseases revealed similarity with mouse models that rapidly accumulate bisretinoid condensation products. Thus, visual cycle intermediates and toxic byproducts of this metabolic pathway can be measured and quantified by TPE imaging. CONCLUSION Our work establishes a TPE instrument and measurement method for noninvasive metabolic assessment of the human retina. This approach opens the possibility for monitoring eye diseases in the earliest stages before structural damage to the retina occurs. FUNDING NIH, Research to Prevent Blindness, Foundation for Polish Science, European Regional Development Fund, Polish National Agency for Academic Exchange and Polish Ministry of Science and Higher Education.
Collapse
Affiliation(s)
- Jakub Boguslawski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Palczewska
- Department of Medical Devices, Polgenix, Inc., Cleveland, United States of America
| | - Slawomir Tomczewski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Milkiewicz
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kasprzycki
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Stachowiak
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Komar
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin J Marzejon
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz L Sikorski
- Department of Ophthalmology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Hudzikowski
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Aleksander Głuszek
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Zbigniew Łaszczych
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Karol Karnowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Soboń
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Maciej Wojtkowski
- Physical Chemistry of Biological Systems, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Isla-Magrané H, Veiga A, García-Arumí J, Duarri A. Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages. Stem Cell Res Ther 2021; 12:581. [PMID: 34809716 PMCID: PMC8607587 DOI: 10.1186/s13287-021-02651-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recently, great efforts have been made to design protocols for obtaining ocular cells from human stem cells to model diseases or for regenerative purposes. Current protocols generally focus on isolating retinal cells, retinal pigment epithelium (RPE), or corneal cells and fail to recapitulate the complexity of the tissue during eye development. Here, the generation of more advanced in vitro multiocular organoids from human induced pluripotent stem cells (hiPSCs) is demonstrated. METHODS A 2-step method was established to first obtain self-organized multizone ocular progenitor cells (mzOPCs) from 2D hiPSC cultures within three weeks. Then, after the cells were manually isolated and grown in suspension, 3D multiocular organoids were generated to model important cellular features of developing eyes. RESULTS In the 2D culture, self-formed mzOPCs spanned the neuroectoderm, surface ectoderm, neural crest, and RPE, mimicking early stages of eye development. After lifting, mzOPCs developed into different 3D multiocular organoids composed of multiple cell lineages including RPE, retina, and cornea, and interactions between the different cell types and regions of the eye system were observed. Within these organoids, the retinal regions exhibited correct layering and contained all major retinal cell subtypes as well as retinal morphological cues, whereas the corneal regions closely resembled the transparent ocular-surface epithelium and contained of corneal, limbal, and conjunctival epithelial cells. The arrangement of RPE cells also formed organoids composed of polarized pigmented epithelial cells at the surface that were completely filled with collagen matrix. CONCLUSIONS This approach clearly demonstrated the advantages of the combined 2D-3D construction tissue model as it provided a more ocular native-like cellular environment than that of previous models. In this complex preparations, multiocular organoids may be used to model the crosstalk between different cell types in eye development and disease.
Collapse
Affiliation(s)
- Helena Isla-Magrané
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Anna Veiga
- Regenerative Medicine Program IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Ophthalmology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
37
|
Thomas BB, Lin B, Martinez-Camarillo JC, Zhu D, McLelland BT, Nistor G, Keirstead HS, Humayun MS, Seiler MJ. Co-grafts of Human Embryonic Stem Cell Derived Retina Organoids and Retinal Pigment Epithelium for Retinal Reconstruction in Immunodeficient Retinal Degenerate Royal College of Surgeons Rats. Front Neurosci 2021; 15:752958. [PMID: 34764853 PMCID: PMC8576198 DOI: 10.3389/fnins.2021.752958] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
End-stage age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two major retinal degenerative (RD) conditions that result in irreversible vision loss. Permanent eye damage can also occur in battlefields or due to accidents. This suggests there is an unmet need for developing effective strategies for treating permanent retinal damages. In previous studies, co-grafted sheets of fetal retina with its retinal pigment epithelium (RPE) have demonstrated vision improvement in rat retinal disease models and in patients, but this has not yet been attempted with stem-cell derived tissue. Here we demonstrate a cellular therapy for irreversible retinal eye injuries using a "total retina patch" consisting of retinal photoreceptor progenitor sheets and healthy RPE cells on an artificial Bruch's membrane (BM). For this, retina organoids (ROs) (cultured in suspension) and polarized RPE sheets (cultured on an ultrathin parylene substrate) were made into a co-graft using bio-adhesives [gelatin, growth factor-reduced matrigel, and medium viscosity (MVG) alginate]. In vivo transplantation experiments were conducted in immunodeficient Royal College of Surgeons (RCS) rats at advanced stages of retinal degeneration. Structural reconstruction of the severely damaged retina was observed based on histological assessments and optical coherence tomography (OCT) imaging. Visual functional assessments were conducted by optokinetic behavioral testing and superior colliculus electrophysiology. Long-term survival of the co-graft in the rat subretinal space and improvement in visual function were observed. Immunohistochemistry showed that co-grafts grew, generated new photoreceptors and developed neuronal processes that were integrated into the host retina. This novel approach can be considered as a new therapy for complete replacement of a degenerated retina.
Collapse
Affiliation(s)
- Biju B. Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Bin Lin
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Juan Carlos Martinez-Camarillo
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Danhong Zhu
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bryce T. McLelland
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | | | | | - Mark S. Humayun
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Magdalene J. Seiler
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Department of Ophthalmology, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
38
|
Stone NE, Voigt AP, Mullins RF, Sulchek T, Tucker BA. Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Transl Med 2021; 10:1384-1393. [PMID: 34156760 PMCID: PMC8459636 DOI: 10.1002/sctm.21-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autologous photoreceptor cell replacement is one of the most promising approaches currently under development for the treatment of inherited retinal degenerative blindness. Unlike endogenous stem cell populations, induced pluripotent stem cells (iPSCs) can be differentiated into both rod and cone photoreceptors in high numbers, making them ideal for this application. That said, in addition to photoreceptor cells, state of the art retinal differentiation protocols give rise to all of the different cell types of the normal retina, the majority of which are not required and may in fact hinder successful photoreceptor cell replacement. As such, following differentiation photoreceptor cell enrichment will likely be required. In addition, to prevent the newly generated photoreceptor cells from suffering the same fate as the patient's original cells, correction of the patient's disease-causing genetic mutations will be necessary. In this review we discuss literature pertaining to the use of different cell sorting and transfection approaches with a focus on the development and use of novel next generation microfluidic devices. We will discuss how gold standard strategies have been used, the advantages and disadvantages of each, and how novel microfluidic platforms can be incorporated into the clinical manufacturing pipeline to reduce the complexity, cost, and regulatory burden associated with clinical grade production of photoreceptor cells for autologous cell replacement.
Collapse
Affiliation(s)
- Nicholas E. Stone
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Todd Sulchek
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
39
|
Andreazzoli M, Barravecchia I, De Cesari C, Angeloni D, Demontis GC. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021; 10:cells10092489. [PMID: 34572137 PMCID: PMC8471616 DOI: 10.3390/cells10092489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | | | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (M.A.); (G.C.D.)
| |
Collapse
|
40
|
Ludwig AL, Gamm DM. Outer Retinal Cell Replacement: Putting the Pieces Together. Transl Vis Sci Technol 2021; 10:15. [PMID: 34724034 PMCID: PMC8572485 DOI: 10.1167/tvst.10.10.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Retinal degenerative diseases (RDDs) affecting photoreceptors (PRs) are one of the most prevalent sources of incurable blindness worldwide. Due to a lack of endogenous repair mechanisms, functional cell replacement of PRs and/or retinal pigmented epithelium (RPE) cells are among the most anticipated approaches for restoring vision in advanced RDD. Human pluripotent stem cell (hPSC) technologies have accelerated development of outer retinal cell therapies as they provide a theoretically unlimited source of donor cells. Human PSC-RPE replacement therapies have progressed rapidly, with several completed and ongoing clinical trials. Although potentially more promising, hPSC-PR replacement therapies are still in their infancy. A first-in-human trial of hPSC-derived neuroretinal transplantation has recently begun, but a number of questions regarding survival, reproducibility, functional integration, and mechanism of action remain. The discovery of biomaterial transfer between donor and PR cells has highlighted the need for rigorous safety and efficacy studies of PR replacement. In this review, we briefly discuss the history of neuroretinal and PR cell transplantation to identify remaining challenges and outline a stepwise approach to address specific pieces of the outer retinal cell replacement puzzle.
Collapse
Affiliation(s)
- Allison L. Ludwig
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - David M. Gamm
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
41
|
Brinks J, van Dijk EHC, Klaassen I, Schlingemann RO, Kielbasa SM, Emri E, Quax PHA, Bergen AA, Meijer OC, Boon CJF. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease. Prog Retin Eye Res 2021; 87:100994. [PMID: 34280556 DOI: 10.1016/j.preteyeres.2021.100994] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
The choroid is a key player in maintaining ocular homeostasis and plays a role in a variety of chorioretinal diseases, many of which are poorly understood. Recent advances in the field of single-cell RNA sequencing have yielded valuable insights into the properties of choroidal endothelial cells (CECs). Here, we review the role of the choroid in various physiological and pathophysiological mechanisms, focusing on the role of CECs. We also discuss new insights regarding the phenotypic properties of CECs, CEC subpopulations, and the value of measuring transcriptomics in primary CEC cultures derived from post-mortem eyes. In addition, we discuss key phenotypic, structural, and functional differences that distinguish CECs from other endothelial cells such as retinal vascular endothelial cells. Understanding the specific clinical and molecular properties of the choroid will shed new light on the pathogenesis of the broad clinical range of chorioretinal diseases such as age-related macular degeneration, central serous chorioretinopathy and other diseases within the pachychoroid spectrum, uveitis, and diabetic choroidopathy. Although our knowledge is still relatively limited with respect to the clinical features and molecular pathways that underlie these chorioretinal diseases, we summarise new approaches and discuss future directions for gaining new insights into these sight-threatening diseases and highlight new therapeutic strategies such as pluripotent stem cell‒based technologies and gene therapy.
Collapse
Affiliation(s)
- J Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - E H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - I Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - R O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - S M Kielbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - E Emri
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - P H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A A Bergen
- Department of Clinical Genetics, Section of Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - O C Meijer
- Department of Medicine, Division of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, the Netherlands
| | - C J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
42
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
43
|
Fathi M, Ross CT, Hosseinzadeh Z. Functional 3-Dimensional Retinal Organoids: Technological Progress and Existing Challenges. Front Neurosci 2021; 15:668857. [PMID: 33958988 PMCID: PMC8095320 DOI: 10.3389/fnins.2021.668857] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cell scientists have developed methods for the self-formation of artificial organs, often referred to as organoids. Organoids can be used as model systems for research in multiple biological disciplines. Yoshiki Sasai’s innovation for deriving mammalian retinal tissue from in vitro stem cells has had a large impact on the study of the biology of vision. New developments in retinal organoid technology provide avenues for in vitro models of human retinal diseases, studies of pathological mechanisms, and development of therapies for retinal degeneration, including electronic retinal implants and gene therapy. Moreover, these innovations have played key roles in establishing models for large-scale drug screening, studying the stages of retinal development, and providing a human model for personalized therapeutic approaches, like cell transplants to replace degenerated retinal cells. Here, we first discuss the importance of human retinal organoids to the biomedical sciences. Then, we review various functional features of retinal organoids that have been developed. Finally, we highlight the current limitations of retinal organoid technologies.
Collapse
Affiliation(s)
- Meimanat Fathi
- Department of Cell Techniques and Applied Stem Cell Biology, Faculty of Medicine, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany.,Physiology and Pathophysiology of the Retina Group, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Cody T Ross
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Zohreh Hosseinzadeh
- Physiology and Pathophysiology of the Retina Group, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
44
|
Ribeiro J, Procyk CA, West EL, O'Hara-Wright M, Martins MF, Khorasani MM, Hare A, Basche M, Fernando M, Goh D, Jumbo N, Rizzi M, Powell K, Tariq M, Michaelides M, Bainbridge JWB, Smith AJ, Pearson RA, Gonzalez-Cordero A, Ali RR. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 2021; 35:109022. [PMID: 33882303 PMCID: PMC8065177 DOI: 10.1016/j.celrep.2021.109022] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision.
Collapse
Affiliation(s)
- Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Emma L West
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Monica F Martins
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Aura Hare
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mark Basche
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Milan Fernando
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Neeraj Jumbo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Matteo Rizzi
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Kate Powell
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Menahil Tariq
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Kellogg Eye Centre, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|
45
|
Nair DSR, Seiler MJ, Patel KH, Thomas V, Camarillo JCM, Humayun MS, Thomas BB. Tissue Engineering Strategies for Retina Regeneration. APPLIED SCIENCES-BASEL 2021; 11. [PMID: 35251703 PMCID: PMC8896578 DOI: 10.3390/app11052154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The retina is a complex and fragile photosensitive part of the central nervous system which is prone to degenerative diseases leading to permanent vision loss. No proven treatment strategies exist to treat or reverse the degenerative conditions. Recent investigations demonstrate that cell transplantation therapies to replace the dysfunctional retinal pigment epithelial (RPE) cells and or the degenerating photoreceptors (PRs) are viable options to restore vision. Pluripotent stem cells, retinal progenitor cells, and somatic stem cells are the main cell sources used for cell transplantation therapies. The success of retinal transplantation based on cell suspension injection is hindered by limited cell survival and lack of cellular integration. Recent advances in material science helped to develop strategies to grow cells as intact monolayers or as sheets on biomaterial scaffolds for transplantation into the eyes. Such implants are found to be more promising than the bolus injection approach. Tissue engineering techniques are specifically designed to construct biodegradable or non-degradable polymer scaffolds to grow cells as a monolayer and construct implantable grafts. The engineered cell construct along with the extracellular matrix formed, can hold the cells in place to enable easy survival, better integration, and improved visual function. This article reviews the advances in the use of scaffolds for transplantation studies in animal models and their application in current clinical trials.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Magdalene J. Seiler
- Departments of Physical Medicine & Rehabilitation, Ophthalmology, Anatomy & Neurobiology, Sue and Bill Gross Stem Cell Research Centre, University of California, Irvine, CA 92697-1705, USA
| | - Kahini H. Patel
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Vinoy Thomas
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Juan Carlos Martinez Camarillo
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark S. Humayun
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|