1
|
Kwon M. Impact of Glaucomatous Ganglion Cell Damage on Central Visual Function. Annu Rev Vis Sci 2024; 10:425-453. [PMID: 39292555 PMCID: PMC11529636 DOI: 10.1146/annurev-vision-110223-123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and subsequent visual field defects. RGCs, as the final output neurons of the retina, perform key computations underpinning human pattern vision, such as contrast coding. Conventionally, glaucoma has been associated with peripheral vision loss, and thus, relatively little attention has been paid to deficits in central vision. However, recent advancements in retinal imaging techniques have significantly bolstered research into glaucomatous damage of the macula, revealing that it is prevalent even in the early stages of glaucoma. Thus, it is an opportune time to explore how glaucomatous damage undermines the perceptual processes associated with central visual function. This review showcases recent studies addressing central dysfunction in the early and moderate stages of glaucoma. It further emphasizes the need to characterize glaucomatous damage in both central and peripheral vision, as they jointly affect an individual's everyday activities.
Collapse
Affiliation(s)
- MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA;
| |
Collapse
|
2
|
Noise Generation Methods Preserving Image Color Intensity Distributions. CYBERNETICS AND INFORMATION TECHNOLOGIES 2022. [DOI: 10.2478/cait-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
In many visual perception studies, external visual noise is used as a methodology to broaden the understanding of information processing of visual stimuli. The underlying assumption is that two sources of noise limit sensory processing: the external noise inherent in the environmental signals and the internal noise or internal variability at different levels of the neural system. Usually, when external noise is added to an image, it is evenly distributed. However, the color intensity and image contrast are modified in this way, and it is unclear whether the visual system responds to their change or the noise presence. We aimed to develop several methods of noise generation with different distributions that keep the global image characteristics. These methods are appropriate in various applications for evaluating the internal noise in the visual system and its ability to filter the added noise. As these methods destroy the correlation in image intensity of neighboring pixels, they could be used to evaluate the role of local spatial structure in image processing.
Collapse
|
3
|
Shamsi F, Liu R, Owsley C, Kwon M. Identifying the Retinal Layers Linked to Human Contrast Sensitivity Via Deep Learning. Invest Ophthalmol Vis Sci 2022; 63:27. [PMID: 35179554 PMCID: PMC8859491 DOI: 10.1167/iovs.63.2.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose Luminance contrast is the fundamental building block of human spatial vision. Therefore contrast sensitivity, the reciprocal of contrast threshold required for target detection, has been a barometer of human visual function. Although retinal ganglion cells (RGCs) are known to be involved in contrast coding, it still remains unknown whether the retinal layers containing RGCs are linked to a person's contrast sensitivity (e.g., Pelli-Robson contrast sensitivity) and, if so, to what extent the retinal layers are related to behavioral contrast sensitivity. Thus the current study aims to identify the retinal layers and features critical for predicting a person's contrast sensitivity via deep learning. Methods Data were collected from 225 subjects including individuals with either glaucoma, age-related macular degeneration, or normal vision. A deep convolutional neural network trained to predict a person's Pelli-Robson contrast sensitivity from structural retinal images measured with optical coherence tomography was used. Then, activation maps that represent the critical features learned by the network for the output prediction were computed. Results The thickness of both ganglion cell and inner plexiform layers, reflecting RGC counts, were found to be significantly correlated with contrast sensitivity (r = 0.26 ∼ 0.58, Ps < 0.001 for different eccentricities). Importantly, the results showed that retinal layers containing RGCs were the critical features the network uses to predict a person's contrast sensitivity (an average R2 = 0.36 ± 0.10). Conclusions The findings confirmed the structure and function relationship for contrast sensitivity while highlighting the role of RGC density for human contrast sensitivity.
Collapse
Affiliation(s)
- Foroogh Shamsi
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
| | - Rong Liu
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of life science and medicine, University of Science and Technology of China, Hefei, China
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Xiong YZ, Liu R, Kwon M, Bittner AK, Owsley C, Legge GE. A Unified Rule for Binocular Contrast Summation Applies to Normal Vision and Common Eye Diseases. Invest Ophthalmol Vis Sci 2021; 62:6. [PMID: 34636877 PMCID: PMC8525828 DOI: 10.1167/iovs.62.13.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Binocular summation refers to better visual performance with two eyes than with one eye. Little is known about the mechanism underlying binocular contrast summation in patients with common eye diseases who often exhibit binocularly asymmetric vision loss and structural changes along the visual pathway. Here we asked whether the mechanism of binocular contrast summation remains preserved in eye disease. Methods This study included 1035 subjects with normal ocular health, cataract, age-related macular degeneration, glaucoma, and retinitis pigmentosa. Monocular and binocular contrast sensitivity were measured by the Pelli-Robson contrast sensitivity chart. Interocular ratio (IOR) was quantified as the ratio between the poorer and better eye contrast sensitivity. Binocular summation ratio (BSR) was quantified as the ratio between binocular and better eye contrast sensitivity. Results All groups showed statistically significant binocular summation, with the BSR ranging from 1.25 [1.20, 1.30] in the glaucoma group to 1.31 [1.27, 1.36] in the normal vision group. There was no significant group difference in the BSR, after accounting for IOR. By fitting a binocular summation model Binocular = (Leftm + Rightm)1/m to the contrast sensitivity data, we found that the same binocular summation rule, reflected by the parameter m, applies across the five groups. Conclusions Cortical binocular contrast summation appears to be preserved in spite of eye diseases that can affect the two eyes differently. This finding supports the importance of assessing both monocular and binocular functions, rather than relying on a monocular assessment in the better eye as a potentially inaccurate surrogate measure.
Collapse
Affiliation(s)
- Ying-Zi Xiong
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Rong Liu
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ava K. Bittner
- Department of Ophthalmology, Stein Eye Institute, UCLA, Los Angeles, California, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gordon E. Legge
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
5
|
Wen Y, Chen Z, Zuo C, Yang Y, Xu J, Kong Y, Cheng H, Yu M. High-Pass Visual Acuity Loss and Macular Structure-Function Relationship in Patients With Primary Open-Angle Glaucoma. Transl Vis Sci Technol 2021; 10:26. [PMID: 34004003 PMCID: PMC8083119 DOI: 10.1167/tvst.10.4.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The Logarithm of the Minimum Angle of Resolution (logMAR) chart is the most common clinical test for assessing central visual function in glaucoma. However, based on the use of these charts, visual acuity (VA) often remains normal even when severe macular damage exists. Here, we aim to investigate the potential advantages of high-pass VA in detecting glaucoma compared with conventional VA. Methods Monocular best-corrected VA measurements were compared for a novel high-pass electronic VA chart (e-chart) and a conventional e-chart in 113 primary open-angle glaucoma (POAG) patients with normal logMAR VA and 65 age-similar healthy controls. One hundred thirty-nine POAG patients underwent spectral-domain optical coherence tomography (SD-OCT) for measurement of macular ganglion cell layer plus inner plexiform layer (GCL+IPL) thickness. Structure-function relationships between OCT measurements and the two VAs were compared. The enrolled eyes were divided into two groups for further analyses according to macular visual field (MVF) defects, specifically two or more adjacent abnormal points within the 12 central sites of 30-2 VF. Results The mean deviation (MD) of 30-2 VF test was -12.77 ± 7.47 dB for glaucoma group and -1.70 ± 1.12 dB for control group. The mean difference of the two VAs was slightly larger in glaucoma group (0.29 logMAR) than in control group (0.22 logMAR). The area under the receiver operating characteristic curve of the high-pass e-chart was larger than that of conventional e-chart (0.917 vs. 0.757, P < 0.001). Significant correlations between high-pass VA and GCL+IPL thickness were found only in the MVF-damaged group. Compared with conventional VA, high-pass VA demonstrates stronger correlations with nasal-side macular GCL+IPL thickness (Fisher's Z-test, two-tailed, P2mmin diameter = 0.033 and P3mmin diameter = 0.005). Conclusions Compared with conventional VA, high-pass VA displays slightly higher sensitivity to visual loss in glaucoma and has a stronger correlation with the nasal-side macular GCL+IPL thickness. Translational Relevance The high-pass acuity test has the potential to be used as an ancillary tool to monitor glaucoma over time.
Collapse
Affiliation(s)
- Yun Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zidong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiangang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yang Kong
- School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, China
| | - Hui Cheng
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Wen Y, Chen Z, Zuo C, Yang Y, Xu J, Kong Y, Cheng H, Yu M. Low-Contrast High-Pass Visual Acuity Might Help to Detect Glaucoma Damage: A Structure-Function Analysis. Front Med (Lausanne) 2021; 8:680823. [PMID: 34055847 PMCID: PMC8160221 DOI: 10.3389/fmed.2021.680823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose: The conventional visual acuity (VA) test is not sensitive enough to detect glaucoma macular damage. We aimed to investigate whether VA measurements using low-contrast high-pass optotypes are more sensitive to macular dysfunction in glaucoma and to find the potential structural basis of this difference. Methods: A total of 147 subjects were recruited, including 118 patients with glaucoma (mean age: 46.08 ± 14.64 years) and 29 healthy controls (mean age: 39.83 ± 9.81 years). For each participant, monocular best-corrected VA was measured using a conventional chart and six high-pass charts at 100, 50, 10, 5, 2.5, and 1.25% contrast levels, respectively. The macular retinal thickness and circumpapillary retinal nerve fiber layer (cpRNFL) thickness of all the glaucoma patients were obtained by spectral-domain optical coherence tomography (SD-OCT). Results: Compared with healthy subjects, glaucoma patients with normal vision demonstrated worse VAs in high-pass acuity measurements (0.22–0.93 vs. 0.28–1.08, p < 0.05). Receiver operating characteristic curve (ROC) showed that 1.25% low-contrast high-pass VA was optimal for discriminating between the controls and glaucoma patients (AUC: 0.918, p < 0.001; sensitivity: 77.33%; specificity: 96.55%). Compared with conventional VA, 1.25% high-pass VA correlated better with nasal-side macular retinal ganglion cell (RGC)-related parameters (r = −0.419 to −0.446 vs. r = −0.538 to −0.582; Fisher's Z transformation, pz < 0.05). There was no difference in the strength of correlations between the VAs measured using different charts and cpRNFL thickness (Fisher's Z transformation; pz > 0.05). Conclusions: VA measurement taken with low-contrast (1.25%) high-pass acuity chart is more sensitive in detecting central visual loss in glaucoma than that taken with the conventional chart. Macular RGC damage appears to be associated with low-contrast (1.25%) high-pass visual loss in glaucomatous eyes.
Collapse
Affiliation(s)
- Yun Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zidong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiangang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yang Kong
- School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, China
| | - Hui Cheng
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|