1
|
Li X, Qu Y, Yang Q, Li R, Diao Y, Wang J, Wu L, Zhang C, Cui S, Qin L, Zhuo D, Wang H, Wang L, Huang Y. Cellular Localization of FOXO3 Determines Its Role in Cataractogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1845-1862. [PMID: 37517685 DOI: 10.1016/j.ajpath.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
The transcription factor forkhead box protein (FOX)-O3 is a core regulator of cellular homeostasis, stress response, and longevity. The cellular localization of FOXO3 is closely related to its function. Herein, the role of FOXO3 in cataract formation was explored. FOXO3 showed nuclear translocation in lens epithelial cells (LECs) arranged in a single layer on lens capsule tissues from both human cataract and N-methyl-N-nitrosourea (MNU)-induced rat cataract, also in MNU-injured human (H)-LEC lines. FOXO3 knockdown inhibited the MNU-induced increase in expression of genes related to cell cycle arrest (GADD45A and CCNG2) and apoptosis (BAK and TP53). H2 is highly effective in reducing oxidative impairments in nuclear DNA and mitochondria. When H2 was applied to MNU-injured HLECs, FOXO3 underwent cleavage by MAPK1 and translocated into mitochondria, thereby increasing the transcription of oxidative phosphorylation-related genes (MTCO1, MTCO2, MTND1, and MTND6) in HLECs. Furthermore, H2 mediated the translocation of FOXO3 from the nucleus to the mitochondria within the LECs of cataract capsule tissues of rats exposed to MNU. This intervention ameliorated MNU-induced cataracts in the rat model. In conclusion, there was a correlation between the localization of FOXO3 and its function in cataract formation. It was also determined that H2 protects HLECs from injury by leading FOXO3 mitochondrial translocation via MAPK1 activation. Mitochondrial FOXO3 can increase mtDNA transcription and stabilize mitochondrial function in HLECs.
Collapse
Affiliation(s)
- Xiaoqi Li
- Medical School of Chinese PLA, Beijing, China; State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yingxin Qu
- Department of Ophthalmology, Chinese Aerospace 731 Hospital, Beijing, China
| | - Qinghua Yang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Runpu Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yumei Diao
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Chuyue Zhang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Shaoyuan Cui
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Limin Qin
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Deyi Zhuo
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huiyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Luo N, Liu M, Hao M, Xu R, Wang F, Zhang W. Comparison of tube shunt implantation and trabeculectomy for glaucoma: a systematic review and meta-analysis. BMJ Open 2023; 13:e065921. [PMID: 37080625 DOI: 10.1136/bmjopen-2022-065921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVE To compare the efficacy and safety of tube shunt implantation with trabeculectomy in the treatment of patients with glaucoma. METHODS A systematic literature search was performed for studies comparing tube with trabeculectomy in patients with glaucoma (final search date: 27 February 2022). Comparisons between tube and trabeculectomy were grouped by the type of tube (Ahmed, Baerveldt, Ex-PRESS and XEN). The primary endpoints included intraocular pressure (IOP), IOP reduction (IOPR), IOPR percentage (IOPR%), complete success rate (CSR), qualified success rate (QSR) and adverse events (AEs). RESULTS Forty-nine studies were included in this meta-analysis and presented data for 3795 eyes (Ahmed: 670, Baerveldt: 561, Ex-PRESS: 473, XEN: 199, trabeculectomy: 1892). Ahmed and Ex-PRESS were similar to trabeculectomy in terms of IOP outcomes and success rate (Ahmed vs trabeculectomy: IOPR%: mean difference (MD)=1.34 (-5.35, 8.02), p=0.69; Ex-PRESS vs trabeculectomy: IOPR%: MD=0.12 (-3.07, 3.31), p=0.94). The IOP outcomes for Baerveldt were worse than those for trabeculectomy (IOPR%: MD=-7.51 (-10.68, -4.35), p<0.00001), but the QSR was higher. No significant difference was shown for the CSR. XEN was worse than trabeculectomy in terms of IOP outcomes (IOPR%: MD=-7.87 (-13.55, -2.18), p=0.007), while the success rate was similar. Ahmed and Ex-PRESS had a lower incidence of AEs than trabeculectomy. Baerveldt had a lower incidence of bleb leakage/wound leakage, hyphaema and hypotonic maculopathy than trabeculectomy but a higher incidence of concurrent cataracts, diplopia/strabismus and tube erosion. The incidence of AEs was similar for the XEN and trabeculectomy procedures. CONCLUSION Compared with trabeculectomy, both Ahmed and Ex-PRESS appear to be associated with similar ocular hypotensive effects and lower incidences of AEs. However, Baerveldt and XEN cannot achieve sufficient reductions in IOP outcomes similar to those of trabeculectomy. PROSPERO REGISTRATION NUMBER CRD42021257852.
Collapse
Affiliation(s)
- Nachuan Luo
- Department of Thoracic Surgery, The second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Miaowen Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meiqi Hao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ruoxin Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fei Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Protective Effect of Salvianolic Acid A against N-Methyl-N-Nitrosourea-Induced Retinal Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1219789. [PMID: 35668785 PMCID: PMC9166948 DOI: 10.1155/2022/1219789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Objective Retinal degeneration (RD) is a serious, irreversible, and blinding eye disease, which seriously affects the visual function and quality of life of patients. At present, there is no effective method to treat RD. The final outcome of its development is photoreceptor cell oxidation and apoptosis. Therefore, looking for safe, convenient, and effective antioxidant therapy is still the key research field of Rd. In this study, the mice model of RD was induced by N-methyl-N-nitrosourea (MNU) in vivo to explore the therapeutic effect and mechanism of salvianolic acids (Sal A) on RD. In vitro, the protective effect of Sal A on MNU injured 661 W cell line of mouse retina photoreceptor cone cells was investigated preliminarily. Methods Male C57BL/6 mice (7–8 weeks old) received a single intraperitoneal injection (ip) of 60 mg/kg MNU or vehicle control. Treatment groups then received Sal-A 0.5 mg/kg and 1.0 mg/kg via daily intravenous injections. On day 7, functional and morphological examinations were performed, including photopic and scotopic electroretinography (ERG) and hematological analyses to observe functional changes and damage to the outer nuclear layer (ONL). On the 3rd and 7th days, the levels of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were determined. The expression of retinal Bax, Bcl-2, and caspase-3 was quantified by Western blot and RT-PCR assays. 661 W strain of mice retinal photoreceptor cone cells were cultured in vitro and treated with 1 µm MNU. The cells in the treatment group were given 50 μM Sal A as an intervention. The growth of 661 W cells was observed and recorded under an inverted light microscope, and the activity of cells was detected by the MTT method. Results Sal A treatment was effective against MNU-induced RD in mice at both 0.5 mg/kg/d and 1.0 mg/kg/d doses, and the protective effect was dose-dependent. Sal A can alleviate MNU-mediated alterations to retinal ERG activity and can support maintenance of the thickness of the ONL layer. Sal A treatment increases the expression of retinal SOD and reduces the lipid peroxidation product MDA, suggesting that its protective effect is related to the oxidation resistance. It can offset changes to the expression of apoptotic factors in the retina caused by MNU treatment. Sal A mitigates MNU-mediated damage to cultured mice photoreceptor cone cells 661 W in vitro. Conclusion Sal A alleviates the damage caused by MNU to retinal photoreceptor cells in vivo and in vivo, and its protective effect is related to its antioxidant and antiapoptotic activities.
Collapse
|
4
|
Bacci GM, Becherucci V, Marziali E, Sodi A, Bambi F, Caputo R. Treatment of Inherited Retinal Dystrophies with Somatic Cell Therapy Medicinal Product: A Review. Life (Basel) 2022; 12:life12050708. [PMID: 35629375 PMCID: PMC9147057 DOI: 10.3390/life12050708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/06/2023] Open
Abstract
Inherited retinal dystrophies and retinal degenerations related to more common diseases (i.e., age-related macular dystrophy) are a major issue and one of the main causes of low vision in pediatric and elderly age groups. Advancement and understanding in molecular biology and the possibilities raised by gene-editing techniques opened a new era for clinicians and patients due to feasible possibilities of treating disabling diseases and the reduction in their complications burden. The scope of this review is to focus on the state-of-the-art in somatic cell therapy medicinal products as the basis of new insights and possibilities to use this approach to treat rare eye diseases.
Collapse
Affiliation(s)
- Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
- Correspondence:
| | - Valentina Becherucci
- Cell Factory Meyer, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Elisa Marziali
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Franco Bambi
- Cell Factory Meyer, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Roberto Caputo
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| |
Collapse
|
5
|
Chen C, Zhang B, Xue J, Li Z, Dou S, Chen H, Wang Q, Qu M, Wang H, Zhang Y, Wan L, Zhou Q, Xie L. Pathogenic Role of Endoplasmic Reticulum Stress in Diabetic Corneal Endothelial Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35238867 PMCID: PMC8899864 DOI: 10.1167/iovs.63.3.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Progressive corneal edema and endothelial cell loss represent the major corneal complications observed in diabetic patients after intraocular surgery. However, the underlying pathogenesis and potential treatment remain incompletely understood. Methods We used streptozotocin-induced type 1 diabetic mice and db/db type 2 diabetic mice as diabetic animal models. These mice were treated with the endoplasmic reticulum (ER) stress agonist thapsigargin; 60-mmHg intraocular pressure (IOP) with the ER stress antagonist 4-phenylbutyric acid (4-PBA); mitochondria-targeted antioxidant SkQ1; or reactive oxygen species scavenger N-acetyl-l-cysteine (NAC). Corneal thickness and endothelial cell density were measured before and after treatment. Human corneal endothelial cells were treated with high glucose with or without 4-PBA. The expression of corneal endothelial- and ER stress–related genes was detected by western blot and immunofluorescence staining. Mitochondrial bioenergetics were measured with an Agilent Seahorse XFp Analyzer. Results In diabetic mice, the appearance of ER stress preceded morphological changes in the corneal endothelium. The persistent ER stress directly caused corneal edema and endothelial cell loss in normal mice. Pharmacological inhibition of ER stress was sufficient to mitigate corneal edema and endothelial cell loss in both diabetic mice after high IOP treatment. Mechanistically, inhibiting ER stress ameliorated the hyperglycemia-induced mitochondrial bioenergetic deficits and improved the barrier and pump functional recovery of the corneal endothelium. When compared with NAC, 4-PBA and SkQ1 exhibited better improvement of corneal edema and endothelial cell loss in diabetic mice. Conclusions Hyperglycemia-induced ER stress contributes to the dysfunction of diabetic corneal endothelium, and inhibiting ER stress may offer therapeutic potential by improving mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Chen Chen
- Department of Ophthalmology, Clinical Medical College of Shandong University, Jinan, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Junfa Xue
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Huilin Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China
| | - Yuan Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China
| | - Luqin Wan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
6
|
Li R, Qu Y, Li X, Tao Y, Yang Q, Wang J, Diao Y, Li Q, Fang Y, Huang Y, Wang L. Molecular Hydrogen Attenuated N-methyl-N-Nitrosourea Induced Corneal Endothelial Injury by Upregulating Anti-Apoptotic Pathway. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34196654 PMCID: PMC8267183 DOI: 10.1167/iovs.62.9.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Previous work by our group has demonstrated the value of N-methyl-N-nitrosourea (MNU)-induced corneal endothelial decompensation in animal models. The aim of this study was to investigate the effect of molecular hydrogen (H2) on MNU-induced corneal endothelial cell (CEC) injury and the underlying mechanism. Methods MNU-induced animal models of CEC injury were washed with hydrogen-rich saline (HRS) for 14 days. Immunofluorescence staining, immunohistochemical staining, and corneal endothelial assessment were applied to determine architectural and cellular changes on the corneal endothelium following HRS treatment. MNU-induced cell models of CEC injury were co-cultured with H2. The effect of H2 was examined using morphological and functional assays. Results It was shown that MNU could inhibit the proliferation and specific physiological functions of CECs by increasing apoptosis and decreasing the expression of ZO-1 and Na+/K+-ATPase, whereas H2 improved the proliferation and physiological function of CECs by anti-apoptosis. Cell experiments further confirmed that H2 could reverse MNU damage to CECs by decreasing oxidative stress injury, interfering with the NF-κB/NLRP3 pathway and the FOXO3a/p53/p21 pathway. Conclusions This study suggests that topical application of H2 could protect CECs against corneal damage factors through anti-apoptotic effect, reduce the incidence and severity of corneal endothelial decompensation, and maintain corneal transparency.
Collapse
Affiliation(s)
- Runpu Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingxin Qu
- Department of Ophthalmology, Chinese Aerospace 731 Hospital, Beijing, China
| | - Xiaoqi Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Qinghua Yang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yumei Diao
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifan Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|