1
|
Mills EP, Liu CC, Mironovich MA, Taylor CM, Luo M, Emelogu U, Scott EM, Leis ML, Carter RT, Camacho-Luna P, Lewin AC. Relationship between the bacterial ocular surface microbiota and outcomes for cats with feline herpesvirus type 1 ocular surface disease. Vet Ophthalmol 2024; 27:318-329. [PMID: 37876296 DOI: 10.1111/vop.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE Feline herpesvirus 1 (FHV-1) causes ocular surface disease in domestic cats. The purpose of this study was to assess the relationship between bacterial ocular surface microbiota and outcomes for cats with FHV-1 ocular surface disease. ANIMALS STUDIED Twenty-two shelter-housed cats with confirmed FHV-1 ocular surface disease. PROCEDURES Animals were grouped according to FHV-1 shedding and ocular clinical scores following intervention: worsened outcome (WorOut, n = 11) or improved outcome (ImpOut, n = 11). Scoring and conjunctival sampling were completed on Days 1 and 8 of twice daily antiviral treatment. Bacterial DNA was extracted and submitted for 16S rRNA gene sequencing. Real-time polymerase chain reaction was performed for selected bacterial species. Overall DNA concentration between groups was assessed. RESULTS Bacterial microbiota relative abundance composition was significantly different between ImpOut and WorOut groups (weighted UniFrac p = .006). Alpha diversity was significantly higher in the ImpOut group compared with the WorOut group (Shannon p = .042, Simpson's p = .022, Pielou's p = .037). Differences in the relative abundance of various phyla and species were detected between groups. Total DNA concentration was higher in the WorOut group compared with the ImpOut group (p = .04). Feline GAPDH (p = .001) and Bilophila wadsworthia (p = .024) copy number was significantly higher in the ImpOut group compared with the WorOut group. CONCLUSIONS The results highlight the important relationship between the bacterial ocular surface microbiota and FHV-1 infection outcomes in cats treated with antiviral medications. Low bacterial species diversity, higher overall DNA (presumed predominantly bacterial) load, and certain bacterial phyla/species were associated with poor outcomes for cats with FHV-1 ocular disease.
Collapse
Affiliation(s)
- Erinn P Mills
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Melanie A Mironovich
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, Health Sciences Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, Health Sciences Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ugochi Emelogu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Erin M Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Marina L Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Renee T Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Pilar Camacho-Luna
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Andrew C Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
2
|
Kong W, Cheng G, Cao J, Yu J, Wang X, Xu Z. Ocular mucosal homeostasis of teleost fish provides insight into the coevolution between microbiome and mucosal immunity. MICROBIOME 2024; 12:10. [PMID: 38218870 PMCID: PMC10787490 DOI: 10.1186/s40168-023-01716-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/07/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND The visual organ plays a crucial role in sensing environmental information. However, its mucosal surfaces are constantly exposed to selective pressures from aquatic or airborne pathogens and microbial communities. Although few studies have characterized the conjunctival-associated lymphoid tissue (CALT) in the ocular mucosa (OM) of birds and mammals, little is known regarding the evolutionary origins and functions of immune defense and microbiota homeostasis of the OM in the early vertebrates. RESULTS Our study characterized the structure of the OM microbial ecosystem in rainbow trout (Oncorhynchus mykiss) and confirmed for the first time the presence of a diffuse mucosal-associated lymphoid tissue (MALT) in fish OM. Moreover, the microbial communities residing on the ocular mucosal surface contribute to shaping its immune environment. Interestingly, following IHNV infection, we observed robust immune responses, significant tissue damage, and microbial dysbiosis in the trout OM, particularly in the fornix conjunctiva (FC), which is characterized by the increase of pathobionts and a reduction of beneficial taxa in the relative abundance in OM. Critically, we identified a significant correlation between viral-induced immune responses and microbiome homeostasis in the OM, underscoring its key role in mucosal immunity and microbiota homeostasis. CONCLUSIONS Our findings suggest that immune defense and microbiota homeostasis in OM occurred concurrently in early vertebrate species, shedding light on the coevolution between microbiota and mucosal immunity. Video Abstract.
Collapse
Affiliation(s)
- Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofeng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiaqian Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|