1
|
Kupersmith MJ, Fraser CL, Morgenstern R, Miller NR, Levin LA, Jette N. Ophthalmic and Systemic Factors of Acute Nonarteritic Anterior Ischemic Optic Neuropathy in the Quark207 Treatment Trial. Ophthalmology 2024; 131:790-802. [PMID: 38211825 DOI: 10.1016/j.ophtha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
PURPOSE We describe the baseline ophthalmic and cardiovascular risk factors across countries, race, and sex for the Quark207 treatment trial for acute nonarteritic anterior ischemic optic neuropathy (NAION). DESIGN Prospective, randomized controlled clinical trial. PARTICIPANTS Adults 50 to 80 years of age with acute NAION recruited from 80 sites across 8 countries. MAIN OUTCOME MEASURES Ophthalmic features of NAION and cardiovascular risk factors. METHODS We evaluated demographics and clinical and ophthalmologic data, including best-corrected visual acuity (BCVA) and average visual field total deviation (TD), in affected eyes and cup-to-disc ratio in fellow eyes at enrollment. We report the prevalence (mean and standard devition, and median and interquartile range [IQR]) of ophthalmic features and cardiovascular risk factors, stratified by country, race, and sex. We corrected for multiple comparisons using Dunn's test with Bonferroni correction for continuous variables and chi-square testing with Holm-Bonferroni correction for categorical variables. RESULTS The study enrolled 500 men and 229 women with a median age of 60 and 61 years (P = 0.027), respectively. Participants were predominantly White (n = 570) and Asian (n = 149). The study eye BCVA was 71 characters (IQR, 53-84 characters; approximately 0.4 logarithm of the minimum angle of resolution), and the TD was -16.5 dB (IQR, -22.2 to -12.6 dB) for stimulus III and -15.7 dB (IQR, -20.8 to -10.9 dB) for stimulus V. The vertical and horizontal cup-to-disc ratio was 0.1 (IQR, 0.1-0.3) for unaffected fellow eyes. The prevalence of cardiovascular risk factors varied among countries. The most notable differences were in the baseline comorbidities and ophthalmologic features, which differed between Asian and White races. Men and women differed with respect to a few clinically meaningful features. CONCLUSIONS The cardiovascular risk factors in the NAION cohort varied among the 7 countries, race, and sex, but were not typically more prevalent than in the general population. Ophthalmic features, typical of NAION, generally were consistent across countries, race, and sex, except for worse BCVA and TD in China. Men have a frequency of NAION twice that of women. Having a small cup-to-disc ratio in the fellow eye was the most prevalent risk factor across all demographics. This study suggests that factors, not yet identified, may contribute to the development of NAION. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Mark J Kupersmith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Clare L Fraser
- Save Sight Institute, Faculty of Health and Medicine, The University of Sydney, Sydney Australia
| | - Rachelle Morgenstern
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Neil R Miller
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Leonard A Levin
- Departments of Ophthalmology and Visual Science, Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Garcia-Herranz D, Garcia-Feijoo J, Herrero-Vanrell R, Pablo L, Bravo-Osuna I, Munuera I, Garcia-Martin E. Influence of sex on chronic steroid-induced glaucoma: 24-Weeks follow-up study in rats. Exp Eye Res 2024; 238:109736. [PMID: 38036216 DOI: 10.1016/j.exer.2023.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The objective was to evaluate ocular changes based on sex in steroid-induced glaucoma models in rats comparing healthy controls, over 24 weeks follow-up. Eighty-nine Long-Evans rats (38 males and 51 females) with steroid-induced glaucoma were analysed. Two steroid-induced glaucoma models were generated by injecting poly-co-lactic-glycolic acid microspheres loaded with dexamethasone (MMDEX model) and dexamethasone-fibronectin (MMDEXAFIBRO model) into the ocular anterior chamber. Intraocular pressure was measured by rebound tonometer Tonolab®. Neuroretinal function was analysed using dark- and light-adapted electroretinography (Roland consult® RETIanimal ERG), and structure was analysed using optical coherence tomography (OCT Spectralis, Heidelberg® Engineering) using Retina Posterior Pole, Retinal Nerve Fibre Layer and Ganglion Cell Layer protocols over 24 weeks. Males showed statistically (p < 0.05) higher intraocular pressure measurements. In both sexes and models neuroretinal thickness tended to decrease over time. In the MMDEX model, males showed higher IOP values and greatest percentage thickness loss in the Ganglion Cell Layer (p = 0.015). Females receiving MMDEXAFIBRO experienced large fluctuations in thickness, a higher percentage loss (on average) in Retina Posterior Pole (p = 0.035), Retinal Nerve Fibre Layer and Ganglion Cell Layer than aged-matched males, and the highest thickness loss rate by mmHg. Although no difference was found by sex in dark- and light-adapted electroretinography, increased amplitude in photopic negative response was found in MMDEX males and MMDEXAFIBRO females at 12 weeks. Although both glaucoma models used dexamethasone, different intraocular pressure and neuroretinal changes were observed depending on sex and other influential cofactors (fibronectin). Both sex and the induced glaucoma model influenced neuroretinal degeneration.
Collapse
Affiliation(s)
- M J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain
| | - T Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - M Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - S Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - D Garcia-Herranz
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain
| | - J Garcia-Feijoo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Ophthalmology, San Carlos Clinical Hospital, Complutense University of Madrid, Spain
| | - R Herrero-Vanrell
- National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Spain
| | - L Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain; Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - I Bravo-Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Spain
| | - I Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - E Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain.
| |
Collapse
|
3
|
Munuera I, Aragon-Navas A, Villacampa P, Gonzalez-Cela MA, Subías M, Pablo LE, Garcia-Feijoo J, Herrero-Vanrell R, Garcia-Martin E, Bravo-Osuna I, Rodrigo MJ. Chronic Glaucoma Induced in Rats by a Single Injection of Fibronectin-Loaded PLGA Microspheres: IOP-Dependent and IOP-Independent Neurodegeneration. Int J Mol Sci 2023; 25:9. [PMID: 38203183 PMCID: PMC10779403 DOI: 10.3390/ijms25010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
To evaluate a new animal model of chronic glaucoma induced using a single injection of fibronectin-loaded biodegradable PLGA microspheres (Ms) to test prolonged therapies. 30 rats received a single injection of fibronectin-PLGA-Ms suspension (MsF) in the right eye, 10 received non-loaded PLGA-Ms suspension (Control), and 17 were non-injected (Healthy). Follow-up was performed (24 weeks), evaluating intraocular pressure (IOP), optical coherence tomography (OCT), histology and electroretinography. The right eyes underwent a progressive increase in IOP, but only induced cohorts reached hypertensive values. The three cohorts presented a progressive decrease in ganglion cell layer (GCL) thickness, corroborating physiological age-related loss of ganglion cells. Injected cohorts (MsF > Control) presented greater final GCL thickness. Histological exams explain this paradox: the MsF cohort showed lower ganglion cell counts but higher astrogliosis and immune response. A sequential trend of functional damage was recorded using scotopic electroretinography (MsF > Control > Healthy). It seems to be a function-structure correlation: in significant astrogliosis, early functional damage can be detected by electroretinography, and structural damage can be detected by histological exams but not by OCT. Males presented higher IOP and retinal and GCL thicknesses and lower electroretinography. A minimally invasive chronic glaucoma model was induced by a single injection of biodegradable Ms.
Collapse
Affiliation(s)
- Ines Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
| | - Alba Aragon-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, 08907 l’Hospitalet de Llobregat, Spain;
| | - Miriam A. Gonzalez-Cela
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Biotech Vision SLP (Spin-Off Company), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Julian Garcia-Feijoo
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (A.A.-N.); (M.A.G.-C.); (R.H.-V.); (I.B.-O.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| | - Maria J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain; (I.M.); (M.S.); (L.E.P.); (M.J.R.)
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28040 Madrid, Spain;
| |
Collapse
|
4
|
Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Proteomics-Based Identification of Retinal Protein Networks Impacted by Elevated Intraocular Pressure in the Hypertonic Saline Injection Model of Experimental Glaucoma. Int J Mol Sci 2023; 24:12592. [PMID: 37628770 PMCID: PMC10454042 DOI: 10.3390/ijms241612592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated intraocular pressure is considered a major cause of glaucomatous retinal neurodegeneration. To facilitate a better understanding of the underlying molecular processes and mechanisms, we report a study focusing on alterations of the retina proteome by induced ocular hypertension in a rat model of the disease. Glaucomatous processes were modeled through sclerosing the aqueous outflow routes of the eyes by hypertonic saline injections into an episcleral vein. Mass spectrometry-based quantitative retina proteomics using a label-free shotgun methodology identified over 200 proteins significantly affected by ocular hypertension. Various facets of glaucomatous pathophysiology were revealed through the organization of the findings into protein interaction networks and by pathway analyses. Concentrating on retinal neurodegeneration as a characteristic process of the disease, elevated intraocular pressure-induced alterations in the expression of selected proteins were verified by targeted proteomics based on nanoflow liquid chromatography coupled with nano-electrospray ionization tandem mass spectrometry using the parallel reaction monitoring method of data acquisition. Acquired raw data are shared through deposition to the ProteomeXchange Consortium (PXD042729), making a retina proteomics dataset on the selected animal model of glaucoma available for the first time.
Collapse
Affiliation(s)
| | | | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| |
Collapse
|
5
|
Agarwal R, Agarwal P, Iezhitsa I. Exploring the current use of animal models in glaucoma drug discovery: where are we in 2023? Expert Opin Drug Discov 2023; 18:1287-1300. [PMID: 37608634 DOI: 10.1080/17460441.2023.2246892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Animal models are widely used in glaucoma-related research. Since the elevated intraocular pressure (IOP) is a major risk factor underlying the disease pathogenesis, animal models with high IOP are commonly used. However, models are also used to represent the clinical context of glaucomatous changes developing despite a normal IOP. AREAS COVERED Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma. EXPERT OPINION Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| |
Collapse
|
6
|
Aragón-Navas A, Rodrigo MJ, Garcia-Herranz D, Martinez T, Subias M, Mendez S, Ruberte J, Pampalona J, Bravo-Osuna I, Garcia-Feijoo J, Pablo LE, Garcia-Martin E, Herrero-Vanrell R. Mimicking chronic glaucoma over 6 months with a single intracameral injection of dexamethasone/fibronectin-loaded PLGA microspheres. Drug Deliv 2022; 29:2357-2374. [PMID: 35904152 PMCID: PMC9341346 DOI: 10.1080/10717544.2022.2096712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To create a chronic glaucoma animal model by a single intracameral injection of biodegradable poly lactic-co-glycolic acid (PLGA) microspheres (Ms) co-loaded with dexamethasone and fibronectin (MsDexaFibro). MsDexaFibro were prepared by a water-in-oil-in-water emulsion method including dexamethasone in the organic phase and fibronectin in the inner aqueous phase. To create the chronic glaucoma model, an interventionist and longitudinal animal study was performed using forty-five Long Evans rats (4-week-old). Rats received a single intracameral injection of MsDexafibro suspension (10%w/v) in the right eye. Ophthalmological parameters such as clinical signs, intraocular pressure (IOP), neuro-retinal functionality by electroretinography (ERG), retinal structural analysis by optical coherence tomography (OCT), and histology were evaluated up to six months. According to the results obtained, the model proposed was able to induce IOP increasing in both eyes over the study, higher in the injected eyes up to 6 weeks (p < 0.05), while preserving the ocular surface. OCT quantified progressive neuro-retinal degeneration (mainly in the retinal nerve fiber layer) in both eyes but higher in the injected eye. Ganglion cell functionality decreased in injected eyes, thus smaller amplitudes in PhNR were detected by ERG. In conclusion, a new chronic glaucoma animal model was created by a single injection of MsDexaFibro very similar to open-angle glaucoma occurring in humans. This model would impact in different fields such as ophthalmology, allowing long period of study of this pathology; pharmacology, evaluating the neuroprotective activity of active compounds; and pharmaceutical technology, allowing the correct evaluation of the efficacy of long-term sustained ocular drug delivery systems.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain
| | - María J Rodrigo
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - David Garcia-Herranz
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain
| | - Teresa Martinez
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Manuel Subias
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Mendez
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Pampalona
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Irene Bravo-Osuna
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Julian Garcia-Feijoo
- National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain.,Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis E Pablo
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Elena Garcia-Martin
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
7
|
Rodrigo MJ, Subías M, Montolío A, Méndez-Martínez S, Martínez-Rincón T, Arias L, García-Herranz D, Bravo-Osuna I, Garcia-Feijoo J, Pablo L, Cegoñino J, Herrero-Vanrell R, Carretero A, Ruberte J, Garcia-Martin E, Pérez del Palomar A. Analysis of Parainflammation in Chronic Glaucoma Using Vitreous-OCT Imaging. Biomedicines 2021; 9:biomedicines9121792. [PMID: 34944608 PMCID: PMC8698891 DOI: 10.3390/biomedicines9121792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Glaucoma causes blindness due to the progressive death of retinal ganglion cells. The immune response chronically and subclinically mediates a homeostatic role. In current clinical practice, it is impossible to analyse neuroinflammation non-invasively. However, analysis of vitreous images using optical coherence tomography detects the immune response as hyperreflective opacities. This study monitors vitreous parainflammation in two animal models of glaucoma, comparing both healthy controls and sexes over six months. Computational analysis characterizes in vivo the hyperreflective opacities, identified histologically as hyalocyte-like Iba-1+ (microglial marker) cells. Glaucomatous eyes showed greater intensity and number of vitreous opacities as well as dynamic fluctuations in the percentage of activated cells (50–250 microns2) vs. non-activated cells (10–50 microns2), isolated cells (10 microns2) and complexes (>250 microns2). Smaller opacities (isolated cells) showed the highest mean intensity (intracellular machinery), were the most rounded at earlier stages (recruitment) and showed the greatest change in orientation (motility). Study of vitreous parainflammation could be a biomarker of glaucoma onset and progression.
Collapse
Affiliation(s)
- María Jesús Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-976765558; Fax: +34-976566234
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Alberto Montolío
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Silvia Méndez-Martínez
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Teresa Martínez-Rincón
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Lorena Arias
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - David García-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
- Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Irene Bravo-Osuna
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Julian Garcia-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, UCM, 28040 Madrid, Spain;
| | - Luis Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
| | - José Cegoñino
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Rocio Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Ana Carretero
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.C.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesus Ruberte
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.C.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
| | - Amaya Pérez del Palomar
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|