1
|
Qian Z, Jiao M, Zhang N, Tang X, Liu S, Zhang F, Wang C, Zheng F. The IL-33/ST2 Axis Protects Retinal Ganglion Cells by Modulating the Astrocyte Response After Optic Nerve Injury. Neurosci Bull 2024:10.1007/s12264-024-01279-y. [PMID: 39190095 DOI: 10.1007/s12264-024-01279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/29/2024] [Indexed: 08/28/2024] Open
Abstract
IL-33 and its receptor ST2 play crucial roles in tissue repair and homeostasis. However, their involvement in optic neuropathy due to trauma and glaucoma remains unclear. Here, we report that IL-33 and ST2 were highly expressed in the mouse optic nerve and retina. Deletion of IL-33 or ST2 exacerbated retinal ganglion cell (RGC) loss, retinal thinning, and nerve fiber degeneration following optic nerve (ON) injury. This heightened retinal neurodegeneration correlated with increased neurotoxic astrocytes in Il33-/- mice. In vitro, rIL-33 mitigated the neurotoxic astrocyte phenotype and reduced the expression of pro-inflammatory factors, thereby alleviating the RGC death induced by neurotoxic astrocyte-conditioned medium in retinal explants. Exogenous IL-33 treatment improved RGC survival in Il33-/- and WT mice after ON injury, but not in ST2-/- mice. Our findings highlight the role of the IL-33/ST2 axis in modulating reactive astrocyte function and providing neuroprotection for RGCs following ON injury.
Collapse
Affiliation(s)
- Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
2
|
Couly S, Yasui Y, Su TP. SIGMAR1 Confers Innate Resilience against Neurodegeneration. Int J Mol Sci 2023; 24:ijms24097767. [PMID: 37175473 PMCID: PMC10178636 DOI: 10.3390/ijms24097767] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The sigma-1 receptor (SIGMAR1) is one of a kind: a receptor chaperone protein. This 223 amino acid-long protein is enriched at the mitochondria-associated endoplasmic reticulum membrane (MAM), a specialized microdomain of the endoplasmic reticulum that is structurally and functionally connected to the mitochondria. As a receptor, SIGMAR1 binds a wide spectrum of ligands. Numerous molecules targeting SIGMAR1 are currently in pre-clinical or clinical development. Interestingly, the range of pathologies covered by these studies is broad, especially with regard to neurodegenerative disorders. Upon activation, SIGMAR1 can translocate and interact with other proteins, mostly at the MAM but also in other organelles, which allows SIGMAR1 to affect many cellular functions. During these interactions, SIGMAR1 exhibits chaperone protein behavior by participating in the folding and stabilization of its partner. In this short communication, we will shed light on how SIGMAR1 confers protection against neurodegeneration to the cells of the nervous system and why this ability makes SIGMAR1 a multifunctional therapeutic prospect.
Collapse
Affiliation(s)
- Simon Couly
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| |
Collapse
|
3
|
Szilágyi A, Takács B, Szekeres R, Tarjányi V, Bombicz M, Priksz D, Kovács A, Juhász B, Frecska E, Szilvássy Z, Varga B. Therapeutic Properties of Ayahuasca Components in Ischemia/Reperfusion Injury of the Eye. Biomedicines 2022; 10:997. [PMID: 35625734 PMCID: PMC9138933 DOI: 10.3390/biomedicines10050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic eye diseases are major causes of vision impairment. Thus, potential retinoprotective effects of N'N-dimethyltryptamine (DMT) were investigated. To inhibit its rapid breakdown by monoamine-oxidase A (MAO-A) enzyme, DMT was co-administered with harmaline, a β-carboline in the Amazonian Ayahuasca brew. Using ligation, 60 min of ischemia was provoked in eyes of rats, followed by 7 days of reperfusion whilst animals received harmaline alone, DMT + harmaline, or vehicle treatment. After 1 week of reperfusion, electroretinographical (ERG) measurements, histological analysis, and Western blot were performed. Harmaline alone exhibited retinoprotection in ischemia-reperfusion (I/R) which was, surprisingly, counterbalanced by DMT in case of co-administration. As both MAO-A inhibition and DMT increase serotoninergic tone synergistically, communicated to be anti-ischemic, thus, involvement of other pathways was investigated. Based on our experiments, DMT and harmaline exert opposite effects on important ocular proteins such as PARP1, NFκB, MMP9, or HSP70, each having a critical role in a different mechanism of eye-ischemia-related pathologies, e.g., cell death, inflammation, tissue destruction, and oxidative stress. Since DMT is proclaimed to be a promising drug candidate, its potentially undesirable effect on eye-ischemia should be further investigated. Meanwhile, this experiment revealed the potential therapeutic effect of MAO-A inhibitor harmaline in I/R-related eye diseases.
Collapse
Affiliation(s)
- Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Barbara Takács
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Réka Szekeres
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Vera Tarjányi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Attila Kovács
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.K.); (E.F.)
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.K.); (E.F.)
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei Krt 98, H-4032 Debrecen, Hungary; (A.S.); (B.T.); (R.S.); (V.T.); (M.B.); (D.P.); (B.J.); (Z.S.)
| |
Collapse
|
4
|
Zhao J, Gonsalvez GB, Mysona BA, Smith SB, Bollinger KE. Sigma 1 Receptor Contributes to Astrocyte-Mediated Retinal Ganglion Cell Protection. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35103752 PMCID: PMC8819349 DOI: 10.1167/iovs.63.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/28/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Sigma 1 receptor (S1R) is expressed in retinal ganglion cells (RGCs) and astrocytes, and its activation is neuroprotective. We evaluated the contribution of S1R within optic nerve head astrocytes (ONHAs) to growth and survival of RGCs in vitro. Methods Wild-type (WT) RGCs and WT or S1R knockout (S1R KO) ONHAs were cocultured for 2, 4, or 7 days. Total and maximal neurite length, neurite root, and extremity counts were measured. Cell death was measured using a TUNEL assay. Signal transducer and activator of transcription 3 phosphorylation levels were evaluated in ONHA-derived lysates by immunoblotting. Results The coculture of WT RGCs with WT or S1R KO ONHAs increased the total and maximal neurite length. Neurite root and extremity counts increased at 4 and 7 days when WT RGCs were cocultured with WT or S1R KO ONHAs. At all timepoints, the total and maximal neurite length decreased for WT RGCs in coculture with S1R KO ONHAs compared with WT ONHAs. Root and extremity counts decreased for WT RGCs in coculture with S1R KO ONHAs compared with WT ONHAs at 2 and 7, but not 4 days. RGC apoptosis increased in S1R KO ONHA coculture and S1R KO-conditioned medium, compared with WT ONHA coculture or WT-conditioned medium. S1R KO ONHA-derived lysates showed decreased phosphorylated signal transducer and activator of transcription 3 levels compared with WT ONHA-derived lysates. Conclusions The absence of S1R within ONHAs has a deleterious effect on RGC neurite growth and RGC survival, reflected in analysis of WT RGC + S1R KO ONHA indirect cocultures. The data suggest that S1R may enhance ganglion cell survival via glia-mediated mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | | | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| |
Collapse
|
5
|
Kirschner A, Strat AN, Yablonski J, Yoo H, Bagué T, Li H, Zhao J, Bollinger KE, Herberg S, Ganapathy PS. Mechanosensitive channel inhibition attenuates TGFβ2-induced actin cytoskeletal remodeling and reactivity in mouse optic nerve head astrocytes. Exp Eye Res 2021; 212:108791. [PMID: 34656548 DOI: 10.1016/j.exer.2021.108791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
Astrocytes within the optic nerve head undergo actin cytoskeletal rearrangement early in glaucoma, which coincides with astrocyte reactivity and extracellular matrix (ECM) deposition. Elevated transforming growth factor beta 2 (TGFβ2) levels within astrocytes have been described in glaucoma, and TGFβ signaling induces actin cytoskeletal remodeling and ECM deposition in many tissues. A key mechanism by which astrocytes sense and respond to external stimuli is via mechanosensitive ion channels. Here, we tested the hypothesis that inhibition of mechanosensitive channels will attenuate TGFβ2-mediated optic nerve head astrocyte actin cytoskeletal remodeling, reactivity, and ECM deposition. Primary optic nerve head astrocytes were isolated from C57BL/6J mice and cell purity was confirmed by immunostaining. Astrocytes were treated with vehicle control, TGFβ2 (5 ng/ml), GsMTx4 (a mechanosensitive channel inhibitor; 500 nM), or TGFβ2 (5 ng/ml) + GsMTx4 (500 nM) for 48 h. FITC-phalloidin staining was used to assess the formation of f-actin stress fibers and to quantify the presence of crosslinked actin networks (CLANs). Cell reactivity was determined by immunostaining and immunoblotting for GFAP. Levels of fibronectin and collagen IV deposition were also quantified. Primary optic nerve head astrocytes were positive for the astrocyte marker GFAP and negative for markers for microglia (F4/80) and oligodendrocytes (OSP1). Significantly increased %CLAN-positive cells were observed after 48-h treatment with TGFβ2 vs. control in a dose-dependent manner. Co-treatment with GsMTx4 significantly decreased %CLAN-positive cells vs. TGFβ2 treatment and the presence of f-actin stress fibers. TGFβ2 treatment significantly increased GFAP, fibronectin, and collagen IV levels, and GsMTx4 co-treatment ameliorated GFAP immunoreactivity. Our data suggest inhibition of mechanosensitive channel activity as a potential therapeutic strategy to modulate actin cytoskeletal remodeling within the optic nerve head in glaucoma.
Collapse
Affiliation(s)
- Alexander Kirschner
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ana N Strat
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - John Yablonski
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah Yoo
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haiyan Li
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta, GA, 30912, USA
| | - Kathryn E Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta, GA, 30912, USA
| | - Samuel Herberg
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Preethi S Ganapathy
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|