1
|
Zhang Y, Chen XY, Hu YZ, Zhang X, Zheng SF, Hu SS. Application of transgenic mice to the molecular pathogenesis of cataract. Int J Ophthalmol 2024; 17:1929-1948. [PMID: 39430018 PMCID: PMC11422363 DOI: 10.18240/ijo.2024.10.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 10/22/2024] Open
Abstract
One of the most prevalent disorders that cause blindness worldwide is cataract, and its essence is the visual disorder caused by the opacity of the lens. The significant degree of variation in cataracts and the fact that a variety of factors can impact a patient's lens transparency make it especially crucial to investigate the pathogenesis of cataracts at the molecular level. It has been found that more than 60 genes are linked to the formation of cataracts, and the construction of a transgenic mouse model of cataract similar to the selection of human lens clouding due to a variety of causes has become an important means of studying the pathogenesis of cataract. Therefore, the research on the application of transgenic mice to the molecular pathogenesis of cataracts will be the main topic of this review of the literature.
Collapse
Affiliation(s)
- Yue Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Xiao-Ya Chen
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Yu-Zhu Hu
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Xiao Zhang
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Shun-Fei Zheng
- Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| | - Shan-Shan Hu
- Department of Ophthalmology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
| |
Collapse
|
2
|
Sun Q, Li J, Ma J, Zheng Y, Ju R, Li X, Ren X, Huang L, Chen R, Tan X, Luo L. JAM-C Is Important for Lens Epithelial Cell Proliferation and Lens Fiber Maturation in Murine Lens Development. Invest Ophthalmol Vis Sci 2023; 64:15. [PMID: 38095908 PMCID: PMC10723223 DOI: 10.1167/iovs.64.15.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose The underlying mechanism of congenital cataracts caused by deficiency or mutation of junctional adhesion molecule C (JAM-C) gene remains unclear. Our study aims to elucidate the abnormal developmental process in Jamc-/- lenses and reveal the genes related to lens development that JAM-C may regulate. Methods Jamc knockout (Jamc-/-) mouse embryos and pups were generated for in vivo studies. Four key developmental stages from embryonic day (E) 12.5 to postnatal day (P) 0.5 were selected for the following experiments. Hematoxylin and eosin staining was used for histological analysis. The 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and TUNEL staining were performed to label lens epithelial cell (LEC) proliferation and apoptosis, respectively. Immunofluorescence and Western blot were used to analyze the markers of lens epithelium, cell cycle exit, and lens fiber differentiation. Results JAM-C was expressed throughout the process of lens development. Deletion of Jamc resulted in decreased lens size and disorganized lens fibers, which arose from E16.5 and aggravated gradually. The LECs of Jamc-/- lenses showed decreased quantity and proliferation, accompanied with reduction of key transcription factor, FOXE3. The fibers in Jamc-/- lenses were disorganized. Moreover, Jamc-deficient lens fibers showed significantly altered distribution patterns of Cx46 and Cx50. The marker of fiber homeostasis, γ-crystallin, was also decreased in the inner cortex and core fibers of Jamc-/- lenses. Conclusions Deletion of JAM-C exhibits malfunction of LEC proliferation and fiber maturation during murine lens development, which may be related to the downregulation of FOXE3 expression and abnormal localization patterns of Cx46 and Cx50.
Collapse
Affiliation(s)
- Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingyu Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxing Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
3
|
Abdallah Moady T, Odeh M, Fedida A, Segal Z, Gruber M, Goldfeld M, Kalfon L, Falik-Zaccai TC. Case report: Novel insights into hemorrhagic destruction of the brain, subependymal calcification, and cataracts disease. Front Pediatr 2023; 11:1178280. [PMID: 37780041 PMCID: PMC10534027 DOI: 10.3389/fped.2023.1178280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Pathogenic variants of the junctional adhesion molecule 3 (JAM3/JAM-C; OMIM#606871) is the cause of the rare recessive disorder called hemorrhagic destruction of the brain, subependymal calcification, and cataracts (HDBSCC, OMIM#613730) disease. A similar phenotype is universal, including congenital cataracts and brain hemorrhages with high mortality rate in the first few weeks of life and with a poor neurologic outcome in survivors. We aim to describe and enlighten novel phenotype and genotype of a new patient and review the literature regarding all reported patients worldwide. Case report We report the case of a prenatal and postnatal phenotype of a new patient with a novel pathogenic loss-of-function variant in JAM3, who presented prenatally with cataracts and brain anomalies and postnatally with brain hemorrhages, failure to thrive (FTT), progressive microcephaly, recurrent posterior capsule opacities, and auditory neuropathy. Discussion This study enlightens novel possible functions of JAM3 in the normal development of the brain, the ocular lenses, the auditory system, and possibly the gastrointestinal tract. This study is the first to report of cataracts evident in as early as 23 weeks of gestation and a rare phenomenon of recurrent posterior capsule opacities despite performing recurrent posterior capsulectomy and anterior vitrectomy. We suggest that auditory neuropathy, which is reported here for the first time, is part of the phenotype of HDBSCC, probably due to an endothelial microvasculature disruption of the peripheral eighth nerve or possibly due to impaired nerve conduction from the synapse to the brainstem. Conclusions Prenatal cataracts, brain anomalies, FTT, and auditory neuropathy are part of the phenotype of the HDBSCC disease. We suggest including JAM3 in the gene list known to cause congenital cataracts, brain hemorrhages, and hearing loss. Further studies should address the auditory neuropathy and FTT phenomena in knockout mice models. We further suggest performing comprehensive ophthalmic, audiologic, and gastroenterologic evaluations for living patients worldwide to further confirm these novel phenomena in this rare entity.
Collapse
Affiliation(s)
| | - Marwan Odeh
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Ob/Gyn Ultrasound Unit, Galilee Medical Center, Nahariya, Israel
| | - Ayalla Fedida
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Zvi Segal
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Department of Ophthalmology, Galilee Medical Center, Nahariya, Israel
| | - Maayan Gruber
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Department of ENT, Galilee Medical Center, Nahariya, Israel
| | - Moshe Goldfeld
- Department of Radiology, Galilee Medical Center, Nahariya, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Tzipora C. Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| |
Collapse
|
4
|
Hao XD, Yao YZ, Xu KG, Dong B, Xu WH, Zhang JJ. Insufficient Dose of ERCC8 Protein Caused by a Frameshift Mutation Is Associated With Keratoconus With Congenital Cataracts. Invest Ophthalmol Vis Sci 2022; 63:1. [DOI: 10.1167/iovs.63.13.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Zhi Yao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kai-Ge Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Bin Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wen-Hua Xu
- Department of Inspection, Medical Faculty of Qingdao University, Qingdao, China
| | - Jing-Jing Zhang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| |
Collapse
|