1
|
Parameswarappa DC, Kulkarni A, Sahoo NK, Padhy SK, Singh SR, Héon E, Chhablani J. From Cellular to Metabolic: Advances in Imaging of Inherited Retinal Diseases. Diagnostics (Basel) 2024; 15:28. [PMID: 39795556 PMCID: PMC11720060 DOI: 10.3390/diagnostics15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. Methods: This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs. Results: Key modalities covered are adaptive optics, fluorescence lifetime imaging ophthalmoscopy, polarization-sensitive optical coherence tomography, optoretinography, mitochondrial imaging, flavoprotein fluorescence imaging, and retinal oximetry. Each imaging method covers its principles, acquisition techniques, data from healthy eyes, applications in IRDs with specific examples, and current challenges and future directions. Conclusions: Emerging technologies, including adaptive optics and metabolic imaging, offer promising potential for cellular-level imaging and functional correlation in IRDs, allowing for earlier intervention and improved therapeutic targeting. Their integration into clinical practice may significantly improve IRD management and patient outcomes.
Collapse
Affiliation(s)
- Deepika C. Parameswarappa
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
| | - Ashwini Kulkarni
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Niroj Kumar Sahoo
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Elise Héon
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON M5G 1E8, Canada
| | - Jay Chhablani
- UPMC Eye Centre and Choroidal Analysis and Research (CAR) Lab, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Vaughan M, Tay N, Kalitzeos A, Kane T, Singh N, Zheng A, Dixit M, Pal B, Rajendram R, Balaskas K, Martin Gutierrez MP, Artiaga JC, Koutsocheras G, Adan K, Rodriguez-Carmona M, Barbur JL, Michaelides M, Patterson EJ. Changes in Waveguiding Cone Photoreceptors and Color Vision in Patients With Diabetes Mellitus. Invest Ophthalmol Vis Sci 2024; 65:28. [PMID: 39671213 PMCID: PMC11645757 DOI: 10.1167/iovs.65.14.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/09/2024] [Indexed: 12/14/2024] Open
Abstract
Purpose Although it is well known that photoreceptor damage and color vision loss occur in patients with diabetic retinopathy (DR), the relationship between structural and functional changes in diabetes mellitus (DM) remains unclear. Using highly sensitive measures of photoreceptor structure and function, we aim to determine whether early loss of color sensitivity in DM is also accompanied by decreased cone density. Methods Monocular data from 26 patients with DM and 25 healthy controls were examined to assess cone photoreceptor metrics, using confocal adaptive optics scanning light ophthalmoscopy, and red/green (RG) and yellow/blue (YB) color vision thresholds, using the Colour Assessment and Diagnosis test. Results Both RG and YB thresholds were significantly greater in patients with DM than in the healthy controls (RG and YB = P < 0.001), and there were statistically significant differences between the 2 groups in confocal cone density at 1 degree (P = 0.024), and intercell regularity at both 1 (P = 0.013) and 2 degrees (P = 0.012). In patients with DM, cone density was inversely correlated with YB (at 0.5, 1 and 2 degrees, all P values < 0.041), but not for RG color vision thresholds. Conclusions This is the first study to investigate the relationship between cone metrics and color vision in patients with DM. The results reveal a significant inverse relationship between confocal cone density and color vision thresholds at the locations assessed within the foveal region. These findings represent a significant advancement in oculomics research.
Collapse
Affiliation(s)
- Megan Vaughan
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
- UCL Medical School, University College London, London, England, United Kingdom
| | - Nicole Tay
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- UCL Medical School, University College London, London, England, United Kingdom
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Thomas Kane
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Nav Singh
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Adrian Zheng
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Mira Dixit
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Bishwanath Pal
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Ranjan Rajendram
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | | | | | - Jose Carlo Artiaga
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | | | - Khadra Adan
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | | | - John L. Barbur
- City, University of London, London, England, United Kingdom
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
| | - Emily J. Patterson
- UCL Institute of Ophthalmology, University College London, London, England, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, England, United Kingdom
- Occuity, Reading, United Kingdom
| |
Collapse
|
3
|
Cideciyan AV, Roman AJ, Warner RL, Sumaroka A, Wu V, Jiang YY, Swider M, Garafalo AV, Viarbitskaya I, Russell RC, Kohl S, Wissinger B, Ripamonti C, Barbur JL, Bach M, Carroll J, Morgan JIW, Aleman TS. Evaluation of Retinal Structure and Visual Function in Blue Cone Monochromacy to Develop Clinical Endpoints for L-opsin Gene Therapy. Int J Mol Sci 2024; 25:10639. [PMID: 39408969 PMCID: PMC11477341 DOI: 10.3390/ijms251910639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
L-cone opsin expression by gene therapy is a promising treatment for blue cone monochromacy (BCM) caused by congenital lack of long- and middle-wavelength-sensitive (L/M) cone function. Eight patients with BCM and confirmed pathogenic variants at the OPN1LW/OPN1MW gene cluster participated. Optical coherence tomography (OCT), chromatic perimetry, chromatic microperimetry, chromatic visual acuity (VA), and chromaticity thresholds were performed with unmodified commercial equipment and/or methods available in the public domain. Adaptive optics scanning laser ophthalmoscope (AOSLO) imaging was performed in a subset of patients. Outer retinal changes were detectable by OCT with an age-related effect on the foveal disease stage. Rod and short-wavelength-sensitive (S) cone functions were relatively retained by perimetry, although likely impacted by age-related increases in the pre-retinal absorption of short-wavelength lights. The central macula showed a large loss of red sensitivity on dark-adapted microperimetry. Chromatic VAs with high-contrast red gratings on a blue background were not detectable. Color vision was severely deficient. AOSLO imaging showed reduced total cone density with majority of the population being non-waveguiding. This study developed and evaluated specialized outcomes that will be needed for the determination of efficacy and safety in human clinical trials. Dark-adapted microperimetry with a red stimulus sampling the central macula would be a key endpoint to evaluate the light sensitivity improvements. VA changes specific to L-opsin can be measured with red gratings on a bright blue background and should also be considered as outcome measures in future interventional trials.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Raymond L. Warner
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Yu Y. Jiang
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Robert C. Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Susanne Kohl
- Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany; (S.K.); (B.W.)
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tübingen, D-72076 Tübingen, Germany; (S.K.); (B.W.)
| | | | - John L. Barbur
- Centre for Applied Vision Research, School of Health & Psychological Sciences, City St. George’s, University of London, London EC1V 0HB, UK;
| | - Michael Bach
- Eye Center, Medical Center—Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany;
| | - Joseph Carroll
- Departments of Ophthalmology & Visual Science, Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| | - Tomas S. Aleman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (R.L.W.); (A.S.); (V.W.); (Y.Y.J.); (M.S.); (A.V.G.); (I.V.); (R.C.R.); (J.I.W.M.); (T.S.A.)
| |
Collapse
|
4
|
Kreis J, Carroll J. Applications of Adaptive Optics Imaging for Studying Conditions Affecting the Fovea. Annu Rev Vis Sci 2024; 10:239-262. [PMID: 38635871 DOI: 10.1146/annurev-vision-102122-100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The fovea is a highly specialized region of the central retina, defined by an absence of inner retinal layers and the accompanying vasculature, an increased density of cone photoreceptors, a near absence of rod photoreceptors, and unique private-line photoreceptor to midget ganglion cell circuitry. These anatomical specializations support high-acuity vision in humans. While direct study of foveal shape and size is routinely performed using optical coherence tomography, examination of the other anatomical specializations of the fovea has only recently become possible using an array of adaptive optics (AO)-based imaging tools. These devices correct for the eye's monochromatic aberrations and permit cellular-resolution imaging of the living retina. In this article, we review the application of AO-based imaging techniques to conditions affecting the fovea, with an emphasis on how imaging has advanced our understanding of pathophysiology.
Collapse
Affiliation(s)
- Joseph Kreis
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| | - Joseph Carroll
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| |
Collapse
|
5
|
Righetti G, Kempf M, Kohl S, Wissinger B, Kühlewein L, Stingl K, Stingl K. S-cone contribution to oscillatory potentials in patients with blue cone monochromacy. Doc Ophthalmol 2024; 149:11-21. [PMID: 38871951 PMCID: PMC11236933 DOI: 10.1007/s10633-024-09981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE The aim of this exploratory study is to investigate the role of S-cones in oscillatory potentials (OPs) generation by individuals with blue-cone monochromacy (BCM), retaining S-cones, and achromatopsia (ACHM), lacking cone functions. METHODS This retrospective study analyzed data from 39 ACHM patients, 20 BCM patients, and 26 controls. Central foveal thickness was obtained using spectral-domain optical coherence tomography, while amplitude and implicit time (IT) of a- and b-waves were extracted from the ISCEV Standard dark-adapted 3 cd.s.m-2 full-field ERG (ffERG). Time-frequency analysis of the same measurement enabled the extraction of OPs, providing insights into the dynamic characteristics of the recorded signal. RESULTS Both ACHM and BCM groups showed a significant reduction (p < .00001) of a- and b-wave amplitudes and ITs as well as the power of the OPs compared to the control groups. The comparison between ACHM and BCM didn't show any statistically significant differences in the electrophysiological parameters. The analysis of covariance revealed significantly reduced central foveal thickness in the BCM group compared to ACHM and controls (p < .00001), and in ACHM compared to controls (p < .00001), after age correction and Tukey post-hoc analysis. CONCLUSIONS S-cones do not significantly influence OPs, and the decline in OPs' power is not solely due to a reduced a-wave. This suggests a complex non-linear network influenced by photoreceptor inputs. Morphological changes don't correlate directly with functional alterations, prompting further exploration of OPs' function and physiological role.
Collapse
Affiliation(s)
- Giulia Righetti
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, 72076, Tübingen, Germany.
| | - Melanie Kempf
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, 72076, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, 72076, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Laura Kühlewein
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, 72076, Tübingen, Germany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, 72076, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, 72076, Tübingen, Germany
| | - Krunoslav Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, 72076, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Georgiou M, Robson AG, Fujinami K, de Guimarães TAC, Fujinami-Yokokawa Y, Daich Varela M, Pontikos N, Kalitzeos A, Mahroo OA, Webster AR, Michaelides M. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes. Prog Retin Eye Res 2024; 100:101244. [PMID: 38278208 DOI: 10.1016/j.preteyeres.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.
Collapse
Affiliation(s)
- Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Thales A C de Guimarães
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Angelos Kalitzeos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Section of Ophthalmology, King s College London, St Thomas Hospital Campus, London, United Kingdom; Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, PA, USA.
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
7
|
Britten-Jones AC, Thai L, Flanagan JPM, Bedggood PA, Edwards TL, Metha AB, Ayton LN. Adaptive optics imaging in inherited retinal diseases: A scoping review of the clinical literature. Surv Ophthalmol 2024; 69:51-66. [PMID: 37778667 DOI: 10.1016/j.survophthal.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Adaptive optics (AO) imaging enables direct, objective assessments of retinal cells. Applications of AO show great promise in advancing our understanding of the etiology of inherited retinal disease (IRDs) and discovering new imaging biomarkers. This scoping review systematically identifies and summarizes clinical studies evaluating AO imaging in IRDs. Ovid MEDLINE and EMBASE were searched on February 6, 2023. Studies describing AO imaging in monogenic IRDs were included. Study screening and data extraction were performed by 2 reviewers independently. This review presents (1) a broad overview of the dominant areas of research; (2) a summary of IRD characteristics revealed by AO imaging; and (3) a discussion of methodological considerations relating to AO imaging in IRDs. From 140 studies with AO outcomes, including 2 following subretinal gene therapy treatments, 75% included fewer than 10 participants with AO imaging data. Of 100 studies that included participants' genetic diagnoses, the most common IRD genes with AO outcomes are CNGA3, CNGB3, CHM, USH2A, and ABCA4. Confocal reflectance AO scanning laser ophthalmoscopy was the most reported imaging modality, followed by flood-illuminated AO and split-detector AO. The most common outcome was cone density, reported quantitatively in 56% of studies. Future research areas include guidelines to reduce variability in the reporting of AO methodology and a focus on functional AO techniques to guide the development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| | - Lawrence Thai
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jeremy P M Flanagan
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Phillip A Bedggood
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Thomas L Edwards
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Andrew B Metha
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Sechrest ER, Chmelik K, Tan WD, Deng WT. Blue cone monochromacy and gene therapy. Vision Res 2023; 208:108221. [PMID: 37001420 PMCID: PMC10182257 DOI: 10.1016/j.visres.2023.108221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Blue cone monochromacy (BCM) is a congenital vision disorder characterized by complete loss or severely reduced long- and middle-wavelength cone function, caused by mutations in the OPN1LW/OPN1MW gene cluster on the X-chromosome. BCM patients typically suffer from poor visual acuity, severely impaired color discrimination, myopia, and nystagmus. In this review, we cover the genetic causes of BCM, clinical features of BCM patients, genetic testing, and clinical outcome measurements for future BCM clinical trials. However, our emphasis is on detailing the animal models for BCM and gene therapy using adeno-associated vectors (AAV). We describe two mouse models resembling the two most common causes of BCM, current progress in proof-of-concept studies to treat BCM with deletion mutations, the challenges we face, and future directions.
Collapse
Affiliation(s)
- Emily R Sechrest
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, United States
| | - Kathryn Chmelik
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, United States; Department of Biochemistry, West Virginia University, Morgantown, WV 26505, United States
| | - Wendy D Tan
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, United States
| | - Wen-Tao Deng
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, United States; Department of Biochemistry, West Virginia University, Morgantown, WV 26505, United States.
| |
Collapse
|
9
|
Wang Y, Sun W, Xiao X, Jiang Y, Ouyang J, Wang J, Yi Z, Li S, Jia X, Wang P, Hejtmancik JF, Zhang Q. Unique Haplotypes in OPN1LW as a Common Cause of High Myopia With or Without Protanopia: A Potential Window Into Myopic Mechanism. Invest Ophthalmol Vis Sci 2023; 64:29. [PMID: 37097228 PMCID: PMC10148663 DOI: 10.1167/iovs.64.4.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Purpose Specific haplotypes (LVAVA, LIVVA, and LIAVA) formed by five polymorphisms (p.L153M, p.V171I, p.A174V, p.I178V, and p.S180A in exon 3 of OPN1LW) that cause partial or complete exon skipping have been reported as unique genetic causes of high myopia with or without colorblindness. This study aimed to identify the contribution of OPN1LW to early-onset high myopia (eoHM) and the molecular basis underlying eoHM with or without colorblindness. Methods Comparative analysis of exome sequencing data was conducted for 1226 families with eoHM and 9304 families with other eye conditions. OPN1LW variants detected by targeted or whole exome sequencing were confirmed by long-range amplification and Sanger sequencing, together with segregation analysis. The clinical data were thoroughly analyzed. Results Unique haplotypes and truncation variants in OPN1LW were detected exclusively in 68 of 1226 families with eoHM but in none of the 9304 families with other visual diseases (P = 1.63 × 10-63). Four classes of variants were identified: haplotypes causing partial splicing defects in OPN1LW (LVAVA or LIVVA in 31 families), LVAVA in OPN1LW-OPN1MW hybrid gene (in 3 families), LIAVA in OPN1LW (in 29 families), and truncations in OPN1LW (in 5 families). The first class causes partial loss of red photopigments, whereas the latter three result in complete loss of red photopigments. This is different from the replacement of red with green owing to unequal re-arrangement causing red-green colorblindness alone. Of the 68 families, 42 affected male patients (31 families) with the first class of variants (LVAVA or LIVVA in OPN1LW) had eoHM alone, whereas 37 male patients with the latter 3 classes had eoHM with protanopia. Adaptive optics retinal imaging demonstrated reduced cone regularity and density in men with eoHM caused by OPN1LW variants compared to those patients with eoHM and without OPN1LW variants. Conclusion Based on the 68 families with unique variants in OPN1LW, our study provides firm evidence that the two different phenotypes (eoHM with or without colorblindness) are caused by two different classes of variants (partial splicing-effect haplotypes or complete splicing-effect haplotypes/truncation variants, respectively). The contribution of OPN1LW to eoHM (isolated and syndromic) was characterized by OPN1LW variants found in 5.5% (68/1226) of the eoHM families, making it the second most common cause of monogenic eoHM alone (2.4%) and a frequent cause of syndromic monogenic eoHM with colorblindness. Such haplotypes, in which each individual variant alone is considered a benign polymorphism, are potential candidates for other hereditary diseases with causes of missing genetic defects.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - J Fielding Hejtmancik
- Ophthalmic Molecular Genetics Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Rockville, Maryland, United States
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|