1
|
Sakai D, Maeda T, Yamamoto M, Yokota S, Maeda A, Hirami Y, Nakamura M, Kurimoto Y, Mandai M. Relationship between residual visual field and full-field stimulus testing in patients with late-stage retinal degenerative diseases. Sci Rep 2024; 14:2793. [PMID: 38307956 PMCID: PMC10837419 DOI: 10.1038/s41598-024-53474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
This study aimed to investigate how the extent and central/peripheral location of the residual visual field (VF) in patients with late-stage inherited retinal diseases (IRDs) are related to retinal sensitivity detected using full-field stimulus testing (FST). We reviewed the results of Goldmann perimetry and FST from the medical records of patients with IRDs whose VF represents central (within 10°) and/or peripheral islands, or undetectable. In total, 19 patients (19 eyes) were analyzed in this study. The median value of residual VF area was 1.38%. The median values of rod and cone sensitivities were - 14.9 dB and 7.4 dB, respectively. Patients with only the peripheral island (- 33.9 dB) had better median rod sensitivity than other groups (only central, - 18.9 dB; both, - 3.6 dB). VF area significantly correlated with rod sensitivity (r = - 0.943, p = 0.005) in patients with only peripheral island, but not with cone sensitivity. Peripheral VF islands were significant contributors to FST results, especially rod sensitivity. With reduced or loss of central vision, the extent of residual peripheral VF significantly affected rod sensitivity, suggesting that FST can be useful in quantitatively estimating the overall remaining vision in patients with late-stage IRD.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan.
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Tadao Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Midori Yamamoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Michiko Mandai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
2
|
Amamoto R, Wallick GK, Cepko CL. Retinoic acid signaling mediates peripheral cone photoreceptor survival in a mouse model of retina degeneration. eLife 2022; 11:76389. [PMID: 35315776 PMCID: PMC8940176 DOI: 10.7554/elife.76389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Retinitis Pigmentosa (RP) is a progressive, debilitating visual disorder caused by mutations in a diverse set of genes. In both humans with RP and mouse models of RP, rod photoreceptor dysfunction leads to loss of night vision, and is followed by secondary cone photoreceptor dysfunction and degeneration, leading to loss of daylight color vision. A strategy to prevent secondary cone death could provide a general RP therapy to preserve daylight color vision regardless of the underlying mutation. In mouse models of RP, cones in the peripheral retina survive long-term, despite complete rod loss. The mechanism for such peripheral cone survival had not been explored. Here, we found that active retinoic acid (RA) signaling in peripheral Muller glia is necessary for the abnormally long survival of these peripheral cones. RA depletion by conditional knockout of RA synthesis enzymes, or overexpression of an RA degradation enzyme, abrogated the extended survival of peripheral cones. Conversely, constitutive activation of RA signaling in the central retina promoted long-term cone survival. These results indicate that RA signaling mediates the prolonged peripheral cone survival in the rd1 mouse model of retinal degeneration, and provide a basis for a generic strategy for cone survival in the many diseases that lead to loss of cone-mediated vision.
Collapse
Affiliation(s)
- Ryoji Amamoto
- Department of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Grace K Wallick
- Department of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Constance L Cepko
- Department of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, United States
| |
Collapse
|