1
|
Wilson ZS, Raya-Sandino A, Miranda J, Fan S, Brazil JC, Quiros M, Garcia-Hernandez V, Liu Q, Kim CH, Hankenson KD, Nusrat A, Parkos CA. Critical role of thrombospondin-1 in promoting intestinal mucosal wound repair. JCI Insight 2024; 9:e180608. [PMID: 39078701 PMCID: PMC11385097 DOI: 10.1172/jci.insight.180608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor, CD47, attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remain poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelium-specific loss of TSP1 (VillinCre/+ Thbs1fl/fl or Thbs1ΔIEC mice). We report that exposure to exogenous TSP1 enhanced migration of intestinal epithelial cells in a CD47- and TGF-β1-dependent manner and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics through suppression of RhoA activity, activation of Rho family small GTPase (Rac1), and changes in filamentous-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGF-β1, coordinate integrin-containing cell-matrix adhesion dynamics, and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingyang Liu
- Department of Pathology
- Mary H. Weiser Food Allergy Center, and
| | - Chang H. Kim
- Department of Pathology
- Mary H. Weiser Food Allergy Center, and
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
2
|
Preston KJ, Kawai T, Torimoto K, Kuroda R, Nakayama Y, Akiyama T, Kimura Y, Scalia R, Autieri MV, Rizzo V, Hashimoto T, Osei-Owusu P, Eguchi S. Mitochondrial fission inhibition protects against hypertension induced by angiotensin II. Hypertens Res 2024; 47:1338-1349. [PMID: 38383894 DOI: 10.1038/s41440-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/14/2023] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Mitochondrial dysfunction has been implicated in various types of cardiovascular disease including hypertension. Mitochondrial fission fusion balance is critical to mitochondrial quality control, whereas enhanced fission has been reported in several models of cardiovascular disease. However, limited information is available regarding the contribution of mitochondrial fission in hypertension. Here, we have tested the hypothesis that inhibition of mitochondrial fission attenuates the development of hypertension and associated vascular remodeling. In C57BL6 mice infused with angiotensin II for 2 weeks, co-treatment of mitochondrial fission inhibitor, mdivi1, significantly inhibited angiotensin II-induced development of hypertension assessed by radiotelemetry. Histological assessment of hearts and aortas showed that mdivi1 inhibited vessel fibrosis and hypertrophy induced by angiotensin II. This was associated with attenuation of angiotensin II-induced decline in mitochondrial aspect ratio seen in both the endothelial and medial layers of aortas. Mdivi1 also mitigated angiotensin II-induced cardiac hypertrophy assessed by heart weight-to-body weight ratio as well as by echocardiography. In ex vivo experiments, mdivi1 inhibited vasoconstriction and abolished the enhanced vascular reactivity by angiotensin II in small mesenteric arteries. Proteomic analysis on endothelial cell culture media with angiotensin II and/or mdivi1 treatment revealed that mdivi1 inhibited endothelial cell hypersecretory phenotype induced by angiotensin II. In addition, mdivi1 attenuated angiotensin II-induced protein induction of periostin, a myofibroblast marker in cultured vascular fibroblasts. In conclusion, these data suggest that mdivi1 prevented angiotensin II-induced hypertension and cardiovascular remodeling via multicellular mechanisms in the vasculature.
Collapse
Affiliation(s)
- Kyle J Preston
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tatsuo Kawai
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Keiichi Torimoto
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ryohei Kuroda
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Rosario Scalia
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Michael V Autieri
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Victor Rizzo
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center, Departments of Neurosurgery and Neurobiology Barrow Neurological Institute Phoenix AZ, Phoenix, AZ, USA
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Satoru Eguchi
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Hein LE, SenGupta S, Gunasekaran G, Johnson CN, Parent CA. TGF-β1 activates neutrophil signaling and gene expression but not migration. PLoS One 2023; 18:e0290886. [PMID: 37682817 PMCID: PMC10490904 DOI: 10.1371/journal.pone.0290886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor-associated neutrophils are found in many types of cancer and are often reported to contribute to negative outcomes. The presence of transforming growth factor-beta (TGF-β) in the tumor microenvironment reportedly contributes to the skewing of neutrophils to a more pro-tumor phenotype. The effects of TGF-β on neutrophil signaling and migration are, however, unclear. We sought to characterize TGF-β signaling in both primary human neutrophils and the neutrophil-like cell line HL-60 and determine whether it directly induces neutrophil migration. We found that TGF-β1 does not induce neutrophil chemotaxis in transwell or underagarose migration assays. TGF-β1 does activate canonical signaling through SMAD3 and noncanonical signaling through ERK1/2 in neutrophils in a time- and dose-dependent manner. Additionally, TGF-β1 present in the tumor-conditioned media (TCM) of invasive breast cancer cells results in SMAD3 activation. We discovered that TCM induces neutrophils to secrete leukotriene B4 (LTB4), which is a lipid mediator important for amplifying the range of neutrophil recruitment. However, TGF-β1 alone does not induce secretion of LTB4. RNA-sequencing revealed that TGF-β1 and TCM alter gene expression in HL-60 cells, including the mRNA levels of the pro-tumor oncostatin M (OSM) and vascular endothelial growth factor A (VEGFA). These new insights into the role and impact of TGF-β1 on neutrophil signaling, migration, and gene expression have significant implications in the understanding of the changes in neutrophils that occur in the tumor microenvironment.
Collapse
Affiliation(s)
- Lauren E. Hein
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States of America
| | - Shuvasree SenGupta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Gaurie Gunasekaran
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
- LS&A Program in Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Carole A. Parent
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|