1
|
Wagner M, Sommerer J, Rauscher FG. Extracting full information from OCT scans-signs of early age-related macular degeneration within inner retinal layers by local neighbourhood statistics. Part I: Methodology. Ophthalmic Physiol Opt 2025; 45:231-246. [PMID: 39579003 PMCID: PMC11629861 DOI: 10.1111/opo.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Associations between the occurrence of early age-related macular degeneration (AMD) and alterations in retinal layer thicknesses have been reported based on classical processing of optical coherence tomography (OCT) data by noise removal and subsequent image segmentation. However, speckle noise within OCT data itself bears a substantial part of the total information. For this reason, an omics-type approach was designed for full exploitation of OCT data, which was able to identify signs of early AMD throughout the retina as a whole. METHODS A nested case-control study was designed with 200 early AMD cases and 200 healthy controls. For every participant, within a randomly selected OCT scan and a randomly selected column therein, manual grading was performed for 26 retinal feature positions. At each position, a total of 3792 descriptors were computed, based on nonlinear transformations of OCT data, first-order neighbourhood statistics and Haralick features. Equivalence and differences between cases and controls were tested for every descriptor at each graded position. Results of multiple testing were expressed in terms of false and true discovery rates controlled by the Benjamini-Yekutieli procedure. RESULTS In terms of the amount and disparity of true discoveries, overall non-equivalence of early AMD and healthy groups was found. Strong difference signals were observed at the internal limiting membrane and two central retinal positions, particularly for descriptors emphasising speckle noise. CONCLUSIONS Between retinae of healthy controls and early AMD patients, significant differences were observed at the level of local neighbourhood statistics within the OCT data. Thus, independent evidence was obtained for AMD affecting not only the outer retinal layers but also the retina as a whole, even in the early stages of the disease. Within OCT data, both cartoons and speckle bear essential parts of total information. A constructive, completely documented, traceable and repeatable approach was pursued without invoking artificial intelligence methods.
Collapse
Affiliation(s)
- Marcus Wagner
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
| | - Julia Sommerer
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
| | - Franziska G. Rauscher
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
- Leipzig Research Centre for Civilization Diseases (LIFE)Leipzig UniversityLeipzigGermany
| |
Collapse
|
2
|
Wagner M, Sommerer J, Rauscher FG. Extracting full information from OCT scans-signs of early age-related macular degeneration within inner retinal layers by local neighbourhood statistics. Part II: Results. Ophthalmic Physiol Opt 2025; 45:247-268. [PMID: 39579005 PMCID: PMC11629856 DOI: 10.1111/opo.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Associations between the occurrence of early age related macular degeneration (AMD) and alterations in retinal layer thicknesses have been reported, based on classical processing of optical coherence tomography (OCT) data by noise removal and subsequent image segmentation. However, speckle noise within OCT data itself bears a substantial part of the total information. For this reason, we designed an omics-type approach for full exploitation of OCT data, which was able to identify signs of early AMD throughout the retina as a whole. METHODS A nested case-control study was designed with 200 early AMD cases and 200 healthy controls. For each participant, within a randomly selected OCT scan and a randomly selected column therein, manual grading was performed for 26 retinal feature positions. At every position, a total of 3792 descriptors were computed, based on nonlinear transformations of OCT data, first-order neighbourhood statistics and Haralick features. Equivalence and differences between cases and controls were tested for each descriptor at every graded position. Results of multiple testing were expressed in terms of false and true discovery rates controlled by the Benjamini-Yekutieli procedure. RESULTS In terms of the amount and disparity of true discoveries, overall non-equivalence was found for early AMD and healthy groups. Strong difference signals were observed at the internal limiting membrane and two central retinal positions, particularly for descriptors emphasising speckle noise. CONCLUSIONS Between the retinae of healthy controls and early AMD patients, significant differences were observed at the level of local neighbourhood statistics within OCT data. Thus, independent evidence was obtained for AMD affecting not only the outer retinal layers but the retina as a whole, even in the early stages of the disease. Within OCT data, both cartoon and speckle bear essential parts of the total information. We pursued a constructive, completely documented, traceable and repeatable approach without invoking artificial intelligence methods.
Collapse
Affiliation(s)
- Marcus Wagner
- Institute for Medical Informatics Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
| | - Julia Sommerer
- Institute for Medical Informatics Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
| | - Franziska G. Rauscher
- Institute for Medical Informatics Statistics and Epidemiology (IMISE)Leipzig UniversityLeipzigGermany
- Leipzig Research Centre for Civilisation Diseases (LIFE)Leipzig UniversityLeipzigGermany
| |
Collapse
|
3
|
Emamverdi M, Vatanatham C, Fasih-Ahmad S, Wang Z, Mishra Z, Jain A, Ganegoda A, Clark ME, Habibi A, Ashrafkhorasani M, Owsley C, Curcio CA, Hu ZJ, Sadda SR. Probing Deposit-Driven Age-Related Macular Degeneration Via Thicknesses of Outer Retinal Bands and Choroid: ALSTAR2 Baseline. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 38717424 PMCID: PMC11090139 DOI: 10.1167/iovs.65.5.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose We aimed to identify structural differences in normal eyes, early age-related macular degeneration (AMD), and intermediate AMD eyes using optical coherence tomography (OCT) in a well-characterized, large cross-sectional cohort. Methods Subjects ≥ 60 years with healthy normal eyes, as well as early or intermediate AMD were enrolled in the Alabama Study on Age-related Macular Degeneration 2 (ALSTAR2; NCT04112667). Using Spectralis HRA + OCT2, we obtained macular volumes for each participant. An auto-segmentation software was used to segment six layers and sublayers: photoreceptor inner and outer segments, subretinal drusenoid deposits (SDDs), retinal pigment epithelium + basal lamina (RPE + BL), drusen, and choroid. After manually refining the segmentations of all B-scans, mean thicknesses in whole, central, inner and outer rings of the ETDRS grid were calculated and compared among groups. Results This study involved 502 patients, 252 were healthy, 147 had early AMD, and 103 had intermediate AMD eyes (per Age-Related Eye Disease Study [AREDS] 9-step). Intermediate AMD eyes exhibited thicker SDD and drusen, thinner photoreceptor inner segments, and RPE compared to healthy and early AMD eyes. They also had thicker photoreceptor outer segments than early AMD eyes. Early AMD eyes had thinner photoreceptor outer segments than normal eyes but a thicker choroid than intermediate AMD eyes. Using the Beckman scale, 42% of the eyes initially classified as early AMD shifted to intermediate AMD, making thickness differences for photoreceptor outer segments and choroid insignificant. Conclusions With AMD stages, the most consistent structural differences involve appearance of drusen and SDD, followed by RPE + BL thickness, and then thickness of photoreceptor inner and outer segments. Structural changes in the transition from aging to intermediate AMD include alterations in the outer retinal bands, including the appearance of deposits on either side of the RPE.
Collapse
Affiliation(s)
- Mehdi Emamverdi
- Doheny Eye Institute, Pasadena, California, United States
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | | | | | - Ziyuan Wang
- Doheny Eye Institute, Pasadena, California, United States
| | - Zubin Mishra
- Doheny Eye Institute, Pasadena, California, United States
| | - Anjal Jain
- Doheny Eye Institute, Pasadena, California, United States
| | | | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abbas Habibi
- Doheny Eye Institute, Pasadena, California, United States
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Maryam Ashrafkhorasani
- Doheny Eye Institute, Pasadena, California, United States
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zhihong J. Hu
- Doheny Eye Institute, Pasadena, California, United States
| | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, California, United States
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
4
|
Tong J, Alonso-Caneiro D, Kugelman J, Phu J, Khuu SK, Kalloniatis M. Characterisation of the normal human ganglion cell-inner plexiform layer using widefield optical coherence tomography. Ophthalmic Physiol Opt 2024; 44:457-471. [PMID: 37990841 DOI: 10.1111/opo.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE To describe variations in ganglion cell-inner plexiform layer (GCIPL) thickness in a healthy cohort from widefield optical coherence tomography (OCT) scans. METHODS Widefield OCT scans spanning 55° × 45° were acquired from 470 healthy eyes. The GCIPL was automatically segmented using deep learning methods. Thickness measurements were extracted after correction for warpage and retinal tilt. Multiple linear regression analysis was applied to discern trends between global GCIPL thickness and age, axial length and sex. To further characterise age-related change, hierarchical and two-step cluster algorithms were applied to identify locations sharing similar ageing properties, and rates of change were quantified using regression analyses with data pooled by cluster analysis outcomes. RESULTS Declines in widefield GCIPL thickness with age, increasing axial length and female sex were observed (parameter estimates -0.053, -0.436 and -0.464, p-values <0.001, <0.001 and 0.02, respectively). Cluster analyses revealed concentric, slightly nasally displaced, horseshoe patterns of age-related change in the GCIPL, with up to four statistically distinct clusters outside the macula. Linear regression analyses revealed significant ageing decline in GCIPL thickness across all clusters, with faster rates of change observed at central locations when expressed as absolute (slope = -0.19 centrally vs. -0.04 to -0.12 peripherally) and percentage rates of change (slope = -0.001 centrally vs. -0.0005 peripherally). CONCLUSIONS Normative variations in GCIPL thickness from widefield OCT with age, axial length and sex were noted, highlighting factors worth considering in further developments. Widefield OCT has promising potential to facilitate quantitative detection of abnormal GCIPL outside standard fields of view.
Collapse
Affiliation(s)
- Janelle Tong
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - David Alonso-Caneiro
- School of Science, Technology and Engineering, University of Sunshine Coast, Sunshine Coast, Queensland, Australia
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Jason Kugelman
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Jack Phu
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
- Concord Clinical School, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| | - Sieu K Khuu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
5
|
Nam J, Nivison-Smith L, Trinh M. Spatial Analysis Reveals Vascular Changes in Retinal and Choroidal Vessel Perfusion in Intermediate AMD With Reticular Pseudodrusen. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 38386332 PMCID: PMC10896234 DOI: 10.1167/iovs.65.2.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose To examine the effect of reticular pseudodrusen (RPD) on retinal and choroidal vessel perfusion (VP) topography in intermediate age-related macular degeneration (iAMD) using refined spatial analyses. Methods This was a retrospective cross-sectional study of 120 individuals with 30 iAMDRPD, 60 iAMDno_RPD, and 30 normal eyes, propensity-score matched by age, sex, and presence of cardiovascular-related disease. VP of the superficial and deep retinal and choriocapillaris vascular slabs was assessed from 6 × 6-mm optical coherence tomography angiography (OCTA) scans divided into 126 × 126 grids, with adjustment for various person- and eye-level factors. Grid-wise VP differences (%) among the groups were spatially assessed according to analyses based on the Early Treatment for Diabetic Retinopathy Study (ETDRS), eccentricity (µm), and degree (°). Results VP was significantly decreased between iAMDRPD and iAMDno_RPD, across all vascular slabs in various ETDRS sectors (up to -2.16%; 95% confidence interval, -2.99 to -1.34; P < 0.05). Eccentricity analyses revealed more complex patterns: a bisegmented relationship where VP in iAMDRPD eyes decreased linearly toward 1000 µm then returned toward similar values as iAMDno_RPD, plateauing around 2000 µm in the superficial and 3000 µm in the deep retina (R2 = 0.57-0.9; P < 0.001). Degree-based analysis further showed that the greatest VP differences in iAMDRPD eyes were commonly located superiorly and nasally across all vascular slabs (P < 0.05). Conclusions RPD appears to compound the vascular impact of iAMD, displaying complex spatial patterns beyond the ETDRS sectors. This highlights the importance of considering spatial delineations for future work regarding the role of RPD and vascular dysfunction.
Collapse
Affiliation(s)
- Judy Nam
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, Sydney, Australia
| | - Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, Sydney, Australia
| | - Matt Trinh
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, Sydney, Australia
| |
Collapse
|
6
|
Park C, Lee JH, Park YG. Changes in Neurodegeneration and Visual Prognosis in Branch Retinal Vein Occlusion after Resolution of Macular Edema. J Clin Med 2024; 13:812. [PMID: 38337506 PMCID: PMC10856372 DOI: 10.3390/jcm13030812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to examine the thicknesses of the ganglion cell layer (GCL) and peripapillary retinal nerve fiber layer (RNFL) in eyes with resolved macular edema (ME) in branch retinal vein occlusion (BRVO) and determine their relationship with visual acuity (VA). This retrospective observational case-control study included 57 eyes of BRVO patients with resolved ME after treatment. The macular GCL thickness, peripapillary RNFL thickness, and central macular thickness (CMT) measured on swept-source optical coherence tomography scans with the contralateral eyes used as controls were evaluated. The mean CMT was 270.48 ± 32.7 μm; the mean RNFL thickness was 105.46 ± 25.94 μm in BRVO eyes. Although the average RNFL thickness was decreased in BRVO eyes compared to unaffected eyes, there was no significant difference between the groups. However, the temporal and nasal RNFL thicknesses were significantly different between the groups. The mean affected quadrant had a significantly thinner GCL compared to the corresponding opposite unaffected quadrant (p = 0.02). Final VA was significantly correlated with nasal and middle GCL thicknesses in the affected area (r = -0.512, p = 0.003 and r = -0.537, p = 0.001, respectively); no correlation was found between the average RNFL thickness and mean CMT. The peripapillary RNFL and GCL thicknesses of the affected area were reduced in BRVO eyes compared to unaffected eyes. VA significantly correlated with nasal and middle GCL thicknesses in the affected area. Inner retinal damage occurring in patients with ME secondary to BRVO may be related to the visual prognosis.
Collapse
Affiliation(s)
- Chanjoon Park
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ji Ho Lee
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Young Gun Park
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
7
|
Zhou D, Hu Y, Qiu Z, Liu Z, Jiang H, Kawasaki R, Liu J. Retinal layers changes in patients with age-related macular degeneration treated with intravitreal anti-VEGF agents. BMC Ophthalmol 2023; 23:451. [PMID: 37953270 PMCID: PMC10642061 DOI: 10.1186/s12886-023-03203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate retinal layers changes in patients with age-related macular degeneration (AMD) treated with anti-vascular endothelial growth factor (anti-VEGF) agents and to evaluate if these changes may affect treatment response. METHODS This study included 496 patients with AMD or PCV who were treated with anti-VEGF agents and followed up for at least 6 months. A comprehensive analysis of retinal layers affecting visual acuity was conducted. To eliminate the fact that the average thickness calculated may lead to differences tending to converge towards the mean, we proposed that the retinal layer was divided into different regions and the thickness of the retinal layer was analyzed at the same time. The labeled data will be publicly available for further research. RESULTS Compared to baseline, significant improvement in visual acuity was observed in patients at the 6-month follow-up. Statistically significant reduction in central retinal thickness and separate retinal layer thickness was also observed (p < 0.05). Among all retinal layers, the thickness of the external limiting membrane to retinal pigment epithelium/Bruch's membrane (ELM to RPE/BrM) showed the greatest reduction. Furthermore, the subregional assessment revealed that the ELM to RPE/BrM decreased greater than that of other layers in each region. CONCLUSION Treatment with anti-VEGF agents effectively reduced retinal thickness in all separate retinal layers as well as the retina as a whole and anti-VEGF treatment may be more targeted at the edema site. These findings could have implications for the development of more precise and targeted therapies for AMD treatment.
Collapse
Affiliation(s)
- Dan Zhou
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhongxi Qiu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zirong Liu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Hongyang Jiang
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ryo Kawasaki
- Department of Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jiang Liu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China.
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Trinh M, Kalloniatis M, Alonso-Caneiro D, Nivison-Smith L. Spatial Cluster Patterns of Retinal Sensitivity Loss in Intermediate Age-Related Macular Degeneration Features. Transl Vis Sci Technol 2023; 12:6. [PMID: 37676679 PMCID: PMC10494986 DOI: 10.1167/tvst.12.9.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023] Open
Abstract
Purpose To examine spatial patterns of retinal sensitivity loss in the three key features of intermediate age-related macular degeneration (iAMD). Methods One-hundred individuals (53 iAMD, 47 normal) underwent 10-2 mesopic microperimetry testing in one eye. Pointwise sensitivities (dB) were corrected for age, sex, iAMD status, and co-presence of co-localized key iAMD features: drusen load, pigmentary abnormalities, and reticular pseudodrusen (RPD). Clusters (labeled by ranks of magnitude C-2, C-1, C0) were derived from pointwise sensitivities and then assessed by quadrants and eccentricity/rings. Results Two clusters of decreased sensitivities were evident in iAMD versus normal: C-2, -1.67 dB (95% CI (confidence intervals), -2.36 to -0.98; P < 0.0001); C-1, -0.93 dB (95% CI, -1.5 to -0.36; P < 0.01). One cluster of decreased sensitivity was independently associated each with increased drusen load (13.57 µm increase per -1 dB; P < 0.0001), pigmentary abnormalities (C-1: -2.23 dB; 95% CI, -3.36 to -1.1; P < 0.01), and RPD (C-1: -1.07 dB; 95% CI, -2 to -0.14; P < 0.01). Sensitivity loss in iAMD was biased toward the superior and central macula (P = 0.16 to <0.0001), aligning with structural distributions of features. However, sensitivity loss associated with drusen load also extended to the peripheral macula (P < 0.0001) with paracentral sparing, which was discordant with the central distribution of drusen. Conclusions Drusen load, pigmentary abnormalities, and RPD are associated with patterns of retinal sensitivity loss commonly demonstrating superior and central bias. Results highlighted that a clinical focus on these three key iAMD features using structural measures alone does not capture the complex, spatial extent of vision-related functional impairment in iAMD. Translational Relevance Defining the spatial patterns of retinal sensitivity loss in iAMD can facilitate a targeted visual field protocol for iAMD assessment.
Collapse
Affiliation(s)
- Matt Trinh
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine (Optometry), Deakin University, Geelong, Victoria, Australia
| | - David Alonso-Caneiro
- School of Science, Technology and Engineering, University of Sunshine Coast, Queensland, Australia
| | - Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Jonas JB, Jonas RA, Bikbov MM, Wang YX, Panda-Jonas S. Myopia: Histology, clinical features, and potential implications for the etiology of axial elongation. Prog Retin Eye Res 2023; 96:101156. [PMID: 36585290 DOI: 10.1016/j.preteyeres.2022.101156] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Myopic axial elongation is associated with various non-pathological changes. These include a decrease in photoreceptor cell and retinal pigment epithelium (RPE) cell density and retinal layer thickness, mainly in the retro-equatorial to equatorial regions; choroidal and scleral thinning pronounced at the posterior pole and least marked at the ora serrata; and a shift in Bruch's membrane opening (BMO) occurring in moderately myopic eyes and typically in the temporal/inferior direction. The BMO shift leads to an overhang of Bruch's membrane (BM) into the nasal intrapapillary compartment and BM absence in the temporal region (i.e., parapapillary gamma zone), optic disc ovalization due to shortening of the ophthalmoscopically visible horizontal disc diameter, fovea-optic disc distance elongation, reduction in angle kappa, and straightening/stretching of the papillomacular retinal blood vessels and retinal nerve fibers. Highly myopic eyes additionally show an enlargement of all layers of the optic nerve canal, elongation and thinning of the lamina cribrosa, peripapillary scleral flange (i.e., parapapillary delta zone) and peripapillary choroidal border tissue, and development of circular parapapillary beta, gamma, and delta zone. Pathological features of high myopia include development of macular linear RPE defects (lacquer cracks), which widen to round RPE defects (patchy atrophies) with central BM defects, macular neovascularization, myopic macular retinoschisis, and glaucomatous/glaucoma-like and non-glaucomatous optic neuropathy. BM thickness is unrelated to axial length. Including the change in eye shape from a sphere in emmetropia to a prolate (rotational) ellipsoid in myopia, the features may be explained by a primary BM enlargement in the retro-equatorial/equatorial region leading to axial elongation.
Collapse
Affiliation(s)
- Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karis-University, Mannheim, Germany; Institute for Clinical and Scientific Ophthalmology and Acupuncture Jonas & Panda, Heidelberg, Germany.
| | - Rahul A Jonas
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | | |
Collapse
|
10
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
11
|
Wang YX, Pan Z, Xue CC, Xie H, Wu X, Jonas JB. Macular outer nuclear layer, ellipsoid zone and outer photoreceptor segment band thickness, axial length and other determinants. Sci Rep 2023; 13:5386. [PMID: 37012316 PMCID: PMC10070240 DOI: 10.1038/s41598-023-32629-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The study aims to assess the thickness of the retinal outer nuclear layer (ONL), ellipsoid zone (EZ) and photoreceptor outer segment (POS) band in various macular regions and its associations with axial length and other parameters. Participants of the Beijing Eye Study 2011 underwent a series of examinations including spectral-domain optical coherence tomography of the macula. The current study included 2213 participants without retinal or optic nerve diseases (age: 61.7 ± 8.4 years; range 50-93 years); axial length: 23.15 ± 0.95 mm; range 18.96-29.15 mm). The ONL (fovea: 98.9 ± 8.8 µm), EZ (fovea: 24.1 ± 0.5 µm) and POS band (fovea: 24.3 ± 3.5 µm) were the thickest (P < 0.001) in the fovea (defined as the thinnest central point), followed by the temporal inner, nasal inner, inferior inner, superior inner, inferior outer, temporal outer, nasal outer, and superior outer region. In multivariable analysis, a thicker retinal ONL was associated (correlation coefficient r: 0.40) with shorter axial length (beta: - 0.14; P < 0.001) and shorter disc-fovea distance (beta: - 0.10; P = 0.001), after adjusting for younger age (beta: - 0.26; P < 0.001), male sex (beta: 0.24; P < 0.001), lower serum cholesterol concentration (beta: - 0.05; P = 0.04), and thicker subfoveal choroidal thickness (beta: 0.08; P < 0.001). The POS thickness increased with shorter axial length (beta: - 0.06; P < 0.001) and shorter optic disc-fovea distance (beta: - 0.05; P = 0.03), after adjusting for younger age (beta: - 0.34; P < 0.001), male sex (beta: 0.15; P < 0.001), and thicker subfoveal choroidal thickness (beta: 0.24; P < 0.001). As a conclusion, the photoreceptor ONL, EZ and POS band vary in thickness between different macular regions and differ in their correlations with axial length, disc-fovea distance, age, sex, and subfoveal choroidal thickness. The ONL thickness decrease with longer axial length and longer disc-fovea distance may point to an axial elongation-associated retinal stretching in the macula.
Collapse
Affiliation(s)
- Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Sciences Key Laboratory, Capital University of Medical Science, Beijing, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital University of Medical Science, 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China.
| | - Zhe Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Sciences Key Laboratory, Capital University of Medical Science, Beijing, China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Can Can Xue
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Sciences Key Laboratory, Capital University of Medical Science, Beijing, China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Hui Xie
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, USA
| | - Xiaodong Wu
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, USA
| | - Jost B Jonas
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Sciences Key Laboratory, Capital University of Medical Science, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany
| |
Collapse
|
12
|
Tong J, Phu J, Alonso‐Caneiro D, Khuu SK, Kalloniatis M. High sampling resolution optical coherence tomography reveals potential concurrent reductions in ganglion cell-inner plexiform and inner nuclear layer thickness but not in outer retinal thickness in glaucoma. Ophthalmic Physiol Opt 2023; 43:46-63. [PMID: 36416369 PMCID: PMC10947055 DOI: 10.1111/opo.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To analyse optical coherence tomography (OCT)-derived inner nuclear layer (INL) and outer retinal complex (ORC) measurements relative to ganglion cell-inner plexiform layer (GCIPL) measurements in glaucoma. METHODS Glaucoma participants (n = 271) were categorised by 10-2 visual field defect type. Differences in GCIPL, INL and ORC thickness were calculated between glaucoma and matched healthy eyes (n = 548). Hierarchical cluster algorithms were applied to generate topographic patterns of retinal thickness change, with agreement between layers assessed using Cohen's kappa (κ). Differences in GCIPL, INL and ORC thickness within and outside GCIPL regions showing the greatest reductions and Spearman's correlations between layer pairs were compared with 10-2 mean deviation (MD) and pattern standard deviation (PSD) to determine trends with glaucoma severity. RESULTS Glaucoma participants with inferior and superior defects presented with concordant GCIPL and INL defects demonstrating mostly fair-to-moderate agreement (κ = 0.145-0.540), which was not observed in eyes with no or ring defects (κ = -0.067-0.230). Correlations (r) with MD and PSD were moderate and weak in GCIPL and INL thickness differences, respectively (GCIPL vs. MD r = 0.479, GCIPL vs. PSD r = -0.583, INL vs. MD r = 0.259, INL vs. PSD r = -0.187, p = <0.0001-0.002), and weak in GCIPL-INL correlations (MD r = 0.175, p = 0.004 and PSD r = 0.154, p = 0.01). No consistent patterns in ORC thickness or correlations were observed. CONCLUSIONS In glaucoma, concordant reductions in macular INL and GCIPL thickness can be observed, but reductions in ORC thickness appear unlikely. These findings suggest that trans-synaptic retrograde degeneration may occur in glaucoma and could indicate the usefulness of INL thickness in evaluating glaucomatous damage.
Collapse
Affiliation(s)
- Janelle Tong
- Centre for Eye HealthUniversity of New South WalesNew South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South WalesNew South WalesSydneyAustralia
| | - Jack Phu
- Centre for Eye HealthUniversity of New South WalesNew South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South WalesNew South WalesSydneyAustralia
- Faculty of MedicineUniversity of SydneySydneyNew South WalesAustralia
| | - David Alonso‐Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Sieu K. Khuu
- School of Optometry and Vision ScienceUniversity of New South WalesNew South WalesSydneyAustralia
| | - Michael Kalloniatis
- School of Optometry and Vision ScienceUniversity of New South WalesNew South WalesSydneyAustralia
- School of Medicine (Optometry)Deakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|