1
|
He X, Tian K, Lin X, Chen X, Su Y, Lu Z, Chen Z, Zhang L, Li P, Ma L, Feng G, Zhao X, Lan Z, Zhang C, Xue D, Jin Q. Unveiling the role of RhoA and ferroptosis in vascular permeability: Implications for osteoarthritis. Int J Mol Med 2024; 54:86. [PMID: 39129277 PMCID: PMC11335351 DOI: 10.3892/ijmm.2024.5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Abnormal angiogenesis and increased vascular permeability of subchondral bone are key mechanisms related to osteoarthritis (OA). However, the precise mechanisms responsible for heightened vascular permeability in OA remain unclear. The present study used proteomics to identify protein expression in damaged subchondral bone compared with normal subchondral bone. The results suggest that Ras homolog family member A (RhoA) may be associated with the vascular permeability of subchondral bone and ferroptosis in OA. The results of analysis of clinical samples indicated a significant increase in expression of RhoA in the subchondral bone of OA. This were consistent with the proteomics findings. We found through western blotting, RT‑PCR, and immunofluorescence that RhoA significantly increased the permeability of endothelial cells (ECs) by inhibiting inter‑EC adhesion proteins (zona occludens‑1, connexin 43 and Vascular endothelial‑Cadherin) and actin filaments. Furthermore, RhoA induced ferroptosis core proteins (glutathione peroxidase 4, solute carrier family 7 member 11 and acyl‑CoA synthase long‑chain family member 4, ACSL4) by influencing lipid peroxidation and mitochondrial function, leading to ferroptosis of ECs. This suggested an association between RhoA, ferroptosis and vascular permeability. Ferroptosis significantly increased permeability of ECs by inhibiting inter‑EC adhesion proteins. RhoA increased vascular permeability by inducing ferroptosis of ECs. In vivo, inhibition of RhoA and ferroptosis significantly mitigated progression of OA by alleviating cartilage degeneration and subchondral bone remodeling in mice with destabilization of the medial meniscus. In conclusion, the present findings indicated that RhoA enhanced vascular permeability in OA by inducing ferroptosis. This may serve as a novel strategy for the early prevention and treatment of OA.
Collapse
Affiliation(s)
- Xiaoxin He
- First Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Kuanmin Tian
- First Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Xue Lin
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Xiaolei Chen
- First Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Yajing Su
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Zhidong Lu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Zhirong Chen
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Liang Zhang
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Peng Li
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Gangning Feng
- Ningxia Institute of Osteoarthropathy, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Xin Zhao
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Zhibin Lan
- First Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Chen Zhang
- School of Education, Ningxia University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Di Xue
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Qunhua Jin
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| |
Collapse
|
2
|
Li C, Chen X, Zhang S, Liang C, Deng Q, Li X, Yan H. Pericyte loss via glutaredoxin2 downregulation aggravates diabetes-induced microvascular dysfunction. Exp Eye Res 2024; 247:110025. [PMID: 39117135 DOI: 10.1016/j.exer.2024.110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss and blindness among working-age adults. Pericyte loss is an early pathological feature of DR. Under hyperglycemic conditions, reactive oxygen species (ROS) production increases, leading to oxidative stress and subsequent mitochondrial dysfunction and apoptosis. Dysfunctional pericyte can cause retinal vascular leakage, obliteration, and neovascularization. Glutaredoxin 2 (Grx2) is a mitochondrial glutathione-dependent oxidoreductase which protects cells against oxidative insults by safeguarding mitochondrial function. Whether Grx2 plays a protective role in diabetes-induced microvascular dysfunction remains unclear. Our findings revealed that diabetes-related stress reduced Grx2 expression in pericytes, but not in endothelial cells. Grx2 knock-in ameliorated diabetes-induced microvascular dysfunction in vivo DR models. Decreased Grx2 expression led to significant pericyte apoptosis, and pericyte dysfunction, namely reduced pericyte recruitment towards endothelial cells and increased endothelial cell permeability. Conversely, upregulating Grx2 reversed these effects. Furthermore, Grx2 regulated pericyte apoptosis by modulating complex I activity, which is crucial for pericyte mitochondrial function. Overall, our study uncovered a novel mechanism whereby high glucose inhibited Grx2 expression in vivo and in vitro. Grx2 downregulation exacerbated pericyte apoptosis, pericyte dysfunction, and retinal vascular dysfunction by inactivating complex I and mediating mitochondrial dysfunction in pericytes.
Collapse
Affiliation(s)
- Chenshuang Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Xi Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi Province, China.
| | - Siqi Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Chen Liang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Qi Deng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi Province, China.
| | - Xinnan Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi Province, China; Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi Province, China.
| |
Collapse
|
3
|
Wu S, Zhang Y, Hou Y, Zhu J, Yang H, Cui Y. Research on the role of exosomes secreted by immortalized adipose-derived mesenchymal stem cells differentiated into pericytes in the repair of high glucose-induced retinal vascular endothelial cell damage. Exp Eye Res 2024; 247:110046. [PMID: 39147191 DOI: 10.1016/j.exer.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Diabetic retinopathy, a leading cause of vision impairment, is marked by microvascular complications in the retina, including pericyte loss, a key indicator of early-stage disease. This study explores the therapeutic potential of exosomes derived from immortalized adipose-mesenchymal stem cells differentiated into pericyte-like cells in restoring the function of mouse retinal microvascular endothelial cells damaged by high glucose conditions, thereby contributing to the understanding of early diabetic retinopathy intervention strategies. To induce immortalized adipose-mesenchymal stem cells differentiation into pericyte-like cells, the study employed pericyte growth supplement. And confirmed the success of cell differentiation through the detection of α-smooth muscle actin and neural/glial antigen 2 expression by Western blot and immunofluorescence. Exosomes were isolated from the culture supernatant of immortalized adipose-mesenchymal stem cells using ultracentrifugation and characterized through Western blot for exosomal markers (CD9, CD81, and TSG101), transmission electron microscopy, and nanoparticle tracking analysis. Their influence on mouse retinal microvascular endothelial cells under high glucose stress was assessed through various functional assays. Findings revealed that exosomes, especially those from pericyte-like immortalized adipose-mesenchymal stem cells, were efficiently internalized by retinal microvascular endothelial cells and effectively counteracted high glucose-induced apoptosis. These exosomes also mitigated the rise in reactive oxygen species levels and suppressed the migratory and angiogenic properties of retinal microvascular endothelial cells, as demonstrated by Transwell and tube formation assays, respectively. Furthermore, they preserved endothelial barrier function, reducing hyperglycemia-induced permeability. At the molecular level, qRT-PCR analysis showed that exosome treatment modulated the expression of critical genes involved in angiogenesis (VEGF-A, ANG2, MMP9), inflammation (IL-1β, TNF-α), gap junction communication (CX43), and cytoskeletal regulation (ROCK1), with the most prominent effects seen with exosomes from pericyte-like immortalized adipose-mesenchymal stem cells. High glucose increased the expression of pro-angiogenic and pro-inflammatory markers, which were effectively normalized post-exosome treatment. In conclusion, this research highlights the reparative capacity of exosomes secreted by pericyte-like differentiated immortalized adipose-mesenchymal stem cells in reversing the detrimental effects of high glucose on retinal microvascular endothelial cells. By reducing apoptosis, oxidative stress, inflammation, and abnormal angiogenic behavior, these exosomes present a promising avenue for therapeutic intervention in early diabetic retinopathy. Future studies can focus on elucidating the precise molecular mechanisms and exploring their translational potential in vivo.
Collapse
Affiliation(s)
- Sihui Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China; School of Medicine, Shandong University, Jinan, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yunnan Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China; School of Medicine, Shandong University, Jinan, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yaru Hou
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China; School of Medicine, Shandong University, Jinan, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Hongling Yang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
4
|
Huyan T, Fan L, Zheng ZY, Zhao JH, Han ZR, Wu P, Ma Q, Du YQ, Shi YD, Gu CY, Li XJ, Wang WH, Zhang L, Tie L. ROCK1 inhibition improves wound healing in diabetes via RIPK4/AMPK pathway. Acta Pharmacol Sin 2024; 45:1477-1491. [PMID: 38538716 PMCID: PMC11192920 DOI: 10.1038/s41401-024-01246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/19/2024] [Indexed: 06/23/2024] Open
Abstract
Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.
Collapse
Affiliation(s)
- Tianru Huyan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Lu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhong-Yuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jing-Hui Zhao
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhen-Ru Han
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Qun Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Ya-Qin Du
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yun-di Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Chun-Yan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Wen-Hui Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, 100191, China
| | - Long Zhang
- Department of Wound Healing Center and Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Jara O, Maripillán J, Momboisse F, Cárdenas AM, García IE, Martínez AD. Differential Regulation of Hemichannels and Gap Junction Channels by RhoA GTPase and Actin Cytoskeleton: A Comparative Analysis of Cx43 and Cx26. Int J Mol Sci 2024; 25:7246. [PMID: 39000353 PMCID: PMC11242593 DOI: 10.3390/ijms25137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.
Collapse
Affiliation(s)
- Oscar Jara
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jaime Maripillán
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Fanny Momboisse
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, 75013 Paris, France
| | - Ana María Cárdenas
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Isaac E García
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D Martínez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| |
Collapse
|
6
|
Liu H, Xu X, Li J, Liu Z, Xiong Y, Yue M, Liu P. Overexpression of Plakophilin2 Mitigates Capillary Leak Syndrome in Severe Acute Pancreatitis by Activating the p38/MAPK Signaling Pathway. J Inflamm Res 2024; 17:4129-4149. [PMID: 38952564 PMCID: PMC11215460 DOI: 10.2147/jir.s459449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Capillary leak syndrome (CLS) is an intermediary phase between severe acute pancreatitis (SAP) and multiple organ failure. As a result, CLS is of clinical importance for enhancing the prognosis of SAP. Plakophilin2 (PKP2), an essential constituent of desmosomes, plays a critical role in promoting connections between epithelial cells. However, the function and mechanism of PKP2 in CLS in SAP are not clear at present. Methods We detected the expression of PKP2 in mice pancreatic tissue by transcriptome sequencing and bioinformatics analysis. PKP2 was overexpressed and knocked down to assess its influence on cell permeability, the cytoskeleton, tight junction molecules, cell adhesion junction molecules, and associated pathways. Results PKP2 expression was increased in the pancreatic tissues of SAP mice and human umbilical vein endothelial cells (HUVECs) after lipopolysaccharide (LPS) stimulation. PKP2 overexpression not only reduced endothelial cell permeability but also improved cytoskeleton relaxation in response to acute inflammatory stimulation. PKP2 overexpression increased levels of ZO-1, occludin, claudin1, β-catenin, and connexin43. The overexpression of PKP2 in LPS-induced HUVECs counteracted the inhibitory effect of SB203580 (a p38/MAPK signaling pathway inhibitor) on the p38/MAPK signaling pathway, thereby restoring the levels of ZO-1, β-catenin, and claudin1. Additionally, PKP2 suppression eliminated the enhanced levels of ZO-1, β-catenin, occludin, and claudin1 induced by dehydrocorydaline. We predicted that the upstream transcription factor PPARγregulates PKP2 expression, and our findings demonstrate that the PPARγactivator rosiglitazone significantly upregulates PKP2, whereas its antagonist GW9662 down-regulates PKP2. Administration of rosiglitazone significantly reduced the increase in HUVECs permeability stimulated by LPS. Conversely, PKP2 overexpression counteracted the GW9662-induced reduction in ZO-1, phosphorylated p38/p38, and claudin1. Conclusion The activation of the p38/MAPK signaling pathway by PKP2 mitigates CLS in SAP. PPARγactivator rosiglitazone can up-regulate PKP2. Overall, directing efforts toward PKP2 could prove to be a feasible treatment approach for effectively managing CLS in SAP.
Collapse
Affiliation(s)
- Hui Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Gastroenterology Institute of Jiangxi Province, Nanchang, People’s Republic of China
| | - Xuan Xu
- Department of Gastroenterology, The People’s Hospital of Longhua, Shenzhen, People’s Republic of China
| | - Ji Li
- Department of Gastroenterology, The People’s Hospital of Longhua, Shenzhen, People’s Republic of China
| | - Zheyu Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yuwen Xiong
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Mengli Yue
- Affiliated Longhua People’s Hospital, The Third School of Clinical Medicine, Southern Medical University, Shenzhen, People’s Republic of China
| | - Pi Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
7
|
Gustafson D, DiStefano PV, Wang XF, Wu R, Ghaffari S, Ching C, Rathnakumar K, Alibhai F, Syonov M, Fitzpatrick J, Boudreau E, Lau C, Galant N, Husain M, Li RK, Lee WL, Parekh RS, Monnier PP, Fish JE. Circulating small extracellular vesicles mediate vascular hyperpermeability in diabetes. Diabetologia 2024; 67:1138-1154. [PMID: 38489029 PMCID: PMC11058313 DOI: 10.1007/s00125-024-06120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
AIMS/HYPOTHESIS A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.
Collapse
Affiliation(s)
- Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Xue Fan Wang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siavash Ghaffari
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Faisal Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Michal Syonov
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Jessica Fitzpatrick
- Department of Medicine and Pediatrics, Women's College Hospital, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Emilie Boudreau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Cori Lau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Natalie Galant
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Warren L Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Rulan S Parekh
- Department of Medicine and Pediatrics, Women's College Hospital, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Philippe P Monnier
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
8
|
Zhou Y, Yue S, Li L, Zhang J, Chen L, Chen J. SMPDL3B is palmitoylated and stabilized by ZDHHC5, and its silencing aggravates diabetic retinopathy of db/db mice: Activation of NLRP3/NF-κB pathway. Cell Signal 2024; 116:111064. [PMID: 38266744 DOI: 10.1016/j.cellsig.2024.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Abnormal inflammation of vascular endothelial cells occurs frequently in diabetic retinopathy (DR). Sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B) is a lipid raft enzyme and plays an anti-inflammatory role in various diseases but its function in DR-related vascular endothelial dysfunction remains unknown. We first found that SMPDL3B expression was upregulated from week 10 to 18 in the retinal tissues of db/db mice. Particularly, the high expression of SMPDL3B was mainly observed in retinal vascular endothelium of DR mice. To interfere retinal SMPDL3B expression, adeno-associated viruses 2 (AAV-2) containing SMPDL3B specific shRNA (1233-1253 bp) were injected into the vitreous cavity of db/db mice. SMPDL3B silencing exacerbated the spontaneous DR by further activating the NF-κB/NLRP3 pro-inflammatory pathway. In vitro, human retinal microvascular endothelial cells (HRVECs) were infected with SMPDL3B-shRNA lentiviruses and then stimulated with 30 mM glucose (HG) for 24 h. SMPDL3B-silenced HRVECs secreted more interleukin-1β and had enhanced nuclear p65 translocation. Notably, HG treatment induced the palmitoylation of SMPDL3B. Zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) is a palmitoyltransferase that catalyzes the palmitoylation of its substrates, HG exposure increased the interaction between ZDHHC5 and SMPDL3B in HRVECs. 2-BP, a palmitoylation inhibitor, accelerated the protein degradation of SMPDL3B, whereas palmostatin B, a depalmitoylation inhibitor, decreased its turnover rate in HRVECs. Collectively, the present study suggests a compensatory increase of SMPDL3B in HG-treated HRVECs and the retinal tissues of DR mice, indicating that SMPDL3B may be a potential target for DR treatment.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lihua Li
- Eye Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jiahua Zhang
- Department of Ophthalmology (Diabetic Eye Disease Prevention and Treatment Center), The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lei Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jun Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|