1
|
Hülemeier AG, Lappe M. Limb articulation of biological motion can induce illusory motion perception during self-motion. Iperception 2024; 15:20416695241246755. [PMID: 38903983 PMCID: PMC11188058 DOI: 10.1177/20416695241246755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/27/2024] [Indexed: 06/22/2024] Open
Abstract
When one walks toward a crowd of pedestrians, dealing with their biological motion while controlling one's own self-motion is a difficult perceptual task. Limb articulation of a walker is naturally coupled to the walker's translation through the scene and allows the separation of optic flow generated by self-motion from the biological motion of other pedestrians. Recent research has shown that if limb articulation and translation mismatch, such as for walking in place, self-motion perception becomes biased. This bias may reflect an illusory motion attributed to the pedestrian crowd from the articulation of their limbs. To investigate this hypothesis, we presented observers with a simulation of forward self-motion toward a laterally moving crowd of point-light walkers and asked them to report the perceived lateral speed of the crowd. To investigate the dependence of the crowd speed percept on biological motion, we also included conditions in which the points of the walker were spatially scrambled to destroy body form and limb articulation. We observed illusory crowd speed percepts that were related to the articulation rate of the biological motion. Scrambled walkers also produced illusory motion but it was not related to articulation rate. We conclude that limb articulation induces percepts of crowd motion that can be used for interpreting self-motion toward crowds.
Collapse
Affiliation(s)
- Anna-Gesina Hülemeier
- Institute for Psychology, University of Münster, Münster, North-Rhine Westphalia, Germany
| | - Markus Lappe
- Institute for Psychology, University of Münster, Münster, North-Rhine Westphalia, Germany
| |
Collapse
|
2
|
Ge Y, Yu Y, Huang S, Huang X, Wang L, Jiang Y. Life motion signals bias the perception of apparent motion direction. Br J Psychol 2024; 115:115-128. [PMID: 37623746 DOI: 10.1111/bjop.12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Abstract
Walking direction conveyed by biological motion (BM) cues, which humans are highly sensitive to since birth, can elicit involuntary shifts of attention to enhance the detection of static targets. Here, we demonstrated that such intrinsic sensitivity to walking direction could also modulate the direction perception of simultaneously presented dynamic stimuli. We showed that the perceived direction of apparent motion was biased towards the walking direction even though observers had been informed in advance that the walking direction of BM did not predict the apparent motion direction. In particular, rightward BM cues had an advantage over leftward BM cues in altering the perception of motion direction. Intriguingly, this perceptual bias disappeared when BM cues were shown inverted, or when the critical biological characteristics were removed from the cues. Critically, both the perceptual direction bias and the rightward advantage persisted even when only local BM cues were presented without any global configuration. Furthermore, the rightward advantage was found to be specific to social cues (i.e., BM), as it vanished when non-social cues (i.e., arrows) were utilized. Taken together, these findings support the existence of a specific processing mechanism for life motion signals and shed new light on their influences in a dynamic environment.
Collapse
Affiliation(s)
- Yiping Ge
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yiwen Yu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Suqi Huang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xinyi Huang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Li Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
3
|
Hülemeier AG, Lappe M. Illusory percepts of curvilinear self-motion when moving through crowds. J Vis 2023; 23:6. [PMID: 38112491 PMCID: PMC10732088 DOI: 10.1167/jov.23.14.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Self-motion generates optic flow, a pattern of expanding visual motion. Heading estimation from optic flow analysis is accurate in rigid environments, but it becomes challenging when other human walkers introduce independent motion to the scene. Previous studies showed that heading perception is surprisingly accurate when moving through a crowd of walkers but revealed strong heading biases when either articulation or translation of biological motion were presented in isolation. We hypothesized that these biases resulted from misperceiving the self-motion as curvilinear. Such errors might manifest as opposite biases depending on whether the observer perceived the crowd motion as indication of his/her self-translation or self-rotation. Our study investigated the link between heading biases and illusory path perception. Participants assessed heading and path perception while observing optic flow stimuli with varying walker movements. Self-motion perception was accurate during natural locomotion (articulation and translation), but significant heading biases occurred when walkers only articulated or translated. In this case, participants often reported a curved path of travel. Heading error and curvature pointed in opposite directions. On average, participants perceived the walker motion as evidence for viewpoint rotation leading to curvilinear path percepts.
Collapse
Affiliation(s)
| | - Markus Lappe
- Department of Psychology, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Abstract
Flow parsing is a way to estimate the direction of scene-relative motion of independently moving objects during self-motion of the observer. So far, this has been tested for simple geometric shapes such as dots or bars. Whether further cues such as prior knowledge about typical directions of an object’s movement, e.g., typical human motion, are considered in the estimations is currently unclear. Here, we adjudicated between the theory that the direction of scene-relative motion of humans is estimated exclusively by flow parsing, just like for simple geometric objects, and the theory that prior knowledge about biological motion affects estimation of perceived direction of scene-relative motion of humans. We placed a human point-light walker in optic flow fields that simulated forward motion of the observer. We introduced conflicts between biological features of the walker (i.e., facing and articulation) and the direction of scene-relative motion. We investigated whether perceived direction of scene-relative motion was biased towards biological features and compared the results to perceived direction of scene-relative motion of scrambled walkers and dot clouds. We found that for humans the perceived direction of scene-relative motion was biased towards biological features. Additionally, we found larger flow parsing gain for humans compared to the other walker types. This indicates that flow parsing is not the only visual mechanism relevant for estimating the direction of scene-relative motion of independently moving objects during self-motion: observers also rely on prior knowledge about typical object motion, such as typical facing and articulation of humans.
Collapse
|