1
|
Cates A, Gordon KE. Motor learning alters vision, but vision does not alter motor learning. J Neurophysiol 2024; 132:781-790. [PMID: 39081214 PMCID: PMC11427082 DOI: 10.1152/jn.00175.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/30/2024] Open
Abstract
During visuomotor learning, improvements in motor performance accompany changes in how people use vision. However, the dependencies between altered visual reliance and improvements in motor skill is unclear. The present studies used an online sequence learning task to quantify how changing the availability of visual information affected motor skill learning (study 1) and how changing motor skill affected visual reliance (study 2). Participants used their keyboard to respond to targets falling vertically down a game screen. In study 1 (n = 49), the availability of visual information was altered by manipulating where the targets were visible on the screen. Three experimental groups practiced the task during full or limited vision conditions (when the targets were only visible in specific areas). We hypothesized that limiting visual information would reduce motor learning (i.e., the rate of improvement during training trial blocks). Instead, although participants performed worse during limited vision trials (P < 0.001), there was no difference in learning rate (P = 0.87). In study 2 (n = 119), all participants practiced the task with full vision and their visual reliance (i.e., their performance change between full and limited vision conditions) was quantified before and after training. We hypothesized that with motor learning, visual reliance on future targets would increase, whereas visual reliance on the current targets would decrease. The results of study 2 partially support our hypotheses with visual reliance decreasing for all visual areas (P < 0.001). Together, the results suggest changing motor skill alters how people use vision, but changing visual availability does not affect motor learning.NEW & NOTEWORTHY Previous research has established how people use visual information changes with motor learning. However, the dependencies of these two processes on each other are unclear. We find that limiting the availability of visual information degrades motor performance but not motor learning. We also find that motor learning reduces the impact of limiting the availability of visual information on motor performance. Together, these results suggest that how people use visual information depends on their motor skill.
Collapse
Affiliation(s)
- Alexander Cates
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, United States
| |
Collapse
|
2
|
Cates A, Gordon KE. Seeing does not mean processing: where we look and the visual information we rely on change independently as we learn a novel walking task. Exp Brain Res 2023; 241:2535-2546. [PMID: 37704876 PMCID: PMC10846673 DOI: 10.1007/s00221-023-06704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
People use vision to inform motor control strategies during walking. With practice performing a target stepping task, people shift their gaze farther ahead, transitioning from watching their feet contact the target to looking for future target locations. The shift in gaze focus suggests the role of vision in motor control changes from emphasizing feedback to feedforward control. The present study examines whether changing visual fixation location is accompanied by a similar change in reliance upon visual information. Twenty healthy young adults practiced stepping on moving targets projected on the surface of a treadmill. Periodically, participants' visual reliance was probed by hiding stepping targets which inform feedback or feedforward (targets < or > 1.5 steps ahead, respectively) motor control strategies. We calculated visual reliance as the increase in step error when targets were hidden. We hypothesized that with practice, participant reliance on feedback visual information would decrease and their reliance on feedforward visual information would increase. Contrary to our hypothesis, participants became significantly more reliant on feedback visual information with practice (p < 0.001) but their reliance on feedforward visual information did not change (p = 0.49). Participants' reliance on visual information increased despite looking significantly farther ahead with practice (p < 0.016). Together, these results suggest that participants fixated on feedback information less. However, changes in fixation pattern did not reduce their reliance upon feedback information as stepping performance still significantly decreased when feedback information was removed after training. These findings provide important context for how the role of vision in controlling walking changes with practice.
Collapse
Affiliation(s)
- Alexander Cates
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
- Research Service, Edward Hines Jr. VA Hospital, 5000 5th Ave, Hines, IL, 60141, USA
| |
Collapse
|
3
|
Kopiske K, Heinrich EM, Jahn G, Bendixen A, Einhäuser W. Multisensory cues for walking in virtual reality: humans combine conflicting visual and self-motion information to reproduce distances. J Neurophysiol 2023; 130:1028-1040. [PMID: 37701952 DOI: 10.1152/jn.00011.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
When humans walk, it is important for them to have some measure of the distance they have traveled. Typically, many cues from different modalities are available, as humans perceive both the environment around them (for example, through vision and haptics) and their own walking. Here, we investigate the contribution of visual cues and nonvisual self-motion cues to distance reproduction when walking on a treadmill through a virtual environment by separately manipulating the speed of a treadmill belt and of the virtual environment. Using mobile eye tracking, we also investigate how our participants sampled the visual information through gaze. We show that, as predicted, both modalities affected how participants (N = 28) reproduced a distance. Participants weighed nonvisual self-motion cues more strongly than visual cues, corresponding also to their respective reliabilities, but with some interindividual variability. Those who looked more toward those parts of the visual scene that contained cues to speed and distance tended also to weigh visual information more strongly, although this correlation was nonsignificant, and participants generally directed their gaze toward visually informative areas of the scene less than expected. As measured by motion capture, participants adjusted their gait patterns to the treadmill speed but not to walked distance. In sum, we show in a naturalistic virtual environment how humans use different sensory modalities when reproducing distances and how the use of these cues differs between participants and depends on information sampling.NEW & NOTEWORTHY Combining virtual reality with treadmill walking, we measured the relative importance of visual cues and nonvisual self-motion cues for distance reproduction. Participants used both cues but put more weight on self-motion; weight on visual cues had a trend to correlate with looking at visually informative areas. Participants overshot distances, especially when self-motion was slow; they adjusted steps to self-motion cues but not to visual cues. Our work thus quantifies the multimodal contributions to distance reproduction.
Collapse
Affiliation(s)
- Karl Kopiske
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Elisa-Maria Heinrich
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
- Physics of Cognition Group, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Georg Jahn
- Applied Geropsychology and Cognition, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Alexandra Bendixen
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Wolfgang Einhäuser
- Physics of Cognition Group, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
4
|
Müller C, Baumann T, Einhäuser W, Kopiske K. Slipping while counting: gaze-gait interactions during perturbed walking under dual-task conditions. Exp Brain Res 2023; 241:765-780. [PMID: 36725725 PMCID: PMC9985588 DOI: 10.1007/s00221-023-06560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Walking is a complex task. To prevent falls and injuries, gait needs to constantly adjust to the environment. This requires information from various sensory systems; in turn, moving through the environment continuously changes available sensory information. Visual information is available from a distance, and therefore most critical when negotiating difficult terrain. To effectively sample visual information, humans adjust their gaze to the terrain or-in laboratory settings-when facing motor perturbations. During activities of daily living, however, only a fraction of sensory and cognitive resources can be devoted to ensuring safe gait. How do humans deal with challenging walking conditions when they face high cognitive load? Young, healthy participants (N = 24) walked on a treadmill through a virtual, but naturalistic environment. Occasionally, their gait was experimentally perturbed, inducing slipping. We varied cognitive load by asking participants in some blocks to count backward in steps of seven; orthogonally, we varied whether visual cues indicated upcoming perturbations. We replicated earlier findings on how humans adjust their gaze and their gait rapidly and flexibly on various time scales: eye and head movements responded in a partially compensatory pattern and visual cues mostly affected eye movements. Interestingly, the cognitive task affected mainly head orientation. During the cognitive task, we found no clear signs of a less stable gait or of a cautious gait mode, but evidence that participants adapted their gait less to the perturbations than without secondary task. In sum, cognitive load affects head orientation and impairs the ability to adjust to gait perturbations.
Collapse
Affiliation(s)
- Carl Müller
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany.
| | - Thomas Baumann
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany
| | - Wolfgang Einhäuser
- Physics of Cognition Group, Institute of Physics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Karl Kopiske
- Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany
| |
Collapse
|
5
|
Cates A, Gordon KE. Don't watch your step: gaze behavior adapts with practice of a target stepping task. J Neurophysiol 2022; 128:445-454. [PMID: 35822745 PMCID: PMC9423783 DOI: 10.1152/jn.00155.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Vision plays a vital role in locomotor learning, providing feedback information to correct movement errors, and feedforward information to inform learned movement plans. Gaze behavior, or the distribution of fixation locations, can quantify how visual information is used during the motor learning process. How gaze behavior adapts during motor learning and in response to changing motor performance is poorly understood. This study examines if and how an individual's gaze behavior adapts during a sequence learning, target stepping task. We monitored the gaze behavior of 12 healthy young adults while they walked on a treadmill and attempted to precisely step on moving targets that were separated by variable distances (80%, 100%, and 120% of preferred step length). Participants completed a total of 11 trial blocks of 102 steps each. We hypothesized that both mean fixation distance would increase (participants would look farther ahead), and step error would decrease with experience. Following practice, participants significantly increased their fixation distance (P < 0.001) by 0.27 ± 0.18 steps and decreased their step error (P < 0.001) by 4.0 ± 1.7 cm, supporting our hypothesis. Our results suggest that early in the learning process, participants gaze behavior emphasized gathering visual information necessary for feedback motor control. As motor performance improved with experience, participants shifted their gaze fixation farther ahead placing greater emphasis on the visual information used for feedforward motor control. These findings provide important information about how gaze behavior changes in parallel with improvements in walking performance.NEW & NOTEWORTHY People consistently vary how they use visual information to inform walking. However, what drives this variation and how sampled visual information changes with locomotor learning is not well understood. Here, we find that gaze fixation locations moved farther ahead while step error decreases as participants practice a target stepping task. The results suggest that participants increasingly used a feedforward locomotor control strategy with practice.
Collapse
Affiliation(s)
- Alexander Cates
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|