1
|
Dong L, Fan Z, Fang B, Zhao X, Yao H, Cai G, Yang S, Zhang G, Cheng X, Feng Y, Mi S, Sun W. Oriented cellulose hydrogel: Directed tissue regeneration for reducing corneal leukoplakia and managing fungal corneal ulcers. Bioact Mater 2024; 41:15-29. [PMID: 39101028 PMCID: PMC11292264 DOI: 10.1016/j.bioactmat.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Fungal corneal ulcer is one of the leading causes of corneal blindness in developing countries. Corneal scars such as leukoplakia are formed due to inflammation, oxidative stress and non-directed repair, which seriously affect the patients' subsequent visual and life quality. In this study, drawing inspiration from the oriented structure of collagen fibers within the corneal stroma, we first proposed the directional arrangement of CuTA-CMHT hydrogel system at micro and macro scales based on the 3D printing extrusion method combined with secondary patterning. It played an antifungal role and induced oriented repair in therapy of fungal corneal ulcer. The results showed that it effectively inhibited Candida albicans, Aspergillus Niger, Fusarium sapropelum, which mainly affects TNF, NF-kappa B, and HIF-1 signaling pathways, achieving effective antifungal functions. More importantly, the fibroblasts interacted with extracellular matrix (ECM) of corneal stroma through formation of focal adhesions, promoted the proliferation and directional migration of cells in vitro, induced the directional alignment of collagen fibers and corneal stromal orthogonally oriented repair in vivo. This process is mainly associated with MYLK, MYL9, and ITGA3 molecules. Furthermore, the downregulation the growth factors TGF-β and PDGF-β inhibits myofibroblast development and reduces scar-type ECM production, thereby reducing corneal leukoplakia. It also activates the PI3K-AKT signaling pathway, promoting corneal healing. In conclusion, the oriented CuTA-CMHT hydrogel system mimics the orthogonal arrangement of collagen fibers, inhibits inflammation, eliminates reactive oxygen species, and reduces corneal leukoplakia, which is of great significance in the treatment of fungal corneal ulcer and is expected to write a new chapter in corneal tissue engineering.
Collapse
Affiliation(s)
- Lina Dong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Burns, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zixin Fan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Bixing Fang
- Department of Otolaryngology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoyu Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hongyi Yao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Gangpei Cai
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuo Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, 518040, China
| | - Xiaoqi Cheng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wei Sun
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Nie X, Tang Y, Wu T, Zhao X, Xu Z, Yang R, Sun Y, Wu B, Han Q, Hui J, Liu W. 3D printing sequentially strengthening high-strength natural polymer hydrogel bilayer scaffold for cornea regeneration. Regen Biomater 2024; 11:rbae012. [PMID: 38454966 PMCID: PMC10918636 DOI: 10.1093/rb/rbae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
3D printing of high-strength natural polymer biodegradable hydrogel scaffolds simultaneously resembling the biomechanics of corneal tissue and facilitating tissue regeneration remains a huge challenge due to the inherent brittleness of natural polymer hydrogels and the demanding requirements of printing. Herein, concentrated aqueous solutions of gelatin and carbohydrazide-modified alginate (Gel/Alg-CDH) are blended to form a natural polymer hydrogel ink, where the hydrazides in Alg-CDH are found to form strong hydrogen bonds with the gelatin. The hydrogen-bonding-strengthened Gel/Alg-CDH hydrogel demonstrates an appropriate thickened viscosity and shear thinning for extrusion printing. The strong hydrogen bonds contribute to remarkably increased mechanical properties of Gel/Alg-CDH hydrogel with a maximum elongation of over 400%. In addition, sequentially Ca2+-physical crosslinking and then moderately chemical crosslinking significantly enhance the mechanical properties of Gel/Alg-CDH hydrogels that ultimately exhibit an intriguing J-shaped stress-strain curve (tensile strength of 1.068 MPa and the toughness of 677.6 kJ/m2). The dually crosslinked Gel-Alg-CDH-Ca2+-EDC hydrogels demonstrate a high transparency, physiological swelling stability and rapid enzymatic degradability, as well as suturability. The growth factor and drug-loaded biomimetic bilayer hydrogel scaffold are customized via a multi-nozzle printing system. This bioactive bilayer hydrogel scaffold considerably promotes regeneration of corneal epithelium and stroma and inhibits cornea scarring in rabbit cornea keratoplasty.
Collapse
Affiliation(s)
- Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yong Tang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Tengling Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinrui Zhao
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Ziyang Xu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Rong Yang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yage Sun
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Bin Wu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Quanhong Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Jingwen Hui
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
4
|
Lin Y, Luo W, Jiang B, Lin Q, Tang M, Li X, Xie L. The effect of GelDex-S58 hydrogel on anti-conjunctival scarring after glaucoma filtration surgery. iScience 2023; 26:107633. [PMID: 37664639 PMCID: PMC10474451 DOI: 10.1016/j.isci.2023.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
Excessive scarring is the main cause of surgical failure in glaucoma filtration surgery. S58 has been shown to have an excellent antifibrotic effect but its duration of action is not sufficient to achieve the desired antiscarring effect. In this study, a light-cured bioadhesive hydrogel composed of GelMA and oxidized dextran (ODex), namely, GelDex, was used to load S58 (GelDex-S58). The microscopic morphology of GelDex-S58 appeared to be a porous structure with good slow-release properties and suitable degradation time. Cell Counting Kit-8, cell scratch and transwell assays showed that GelDex-S58 significantly reduced TGF-β-induced fibroblast proliferation, increased migration and invasion ability. In in vivo studies, GelDex-S58 treatment prolonged follicular retention, reduced mean intraocular pressure, and significantly reduced collagen deposition and α-SMA expression levels in the conjunctival tissue compared to treatment with S58 alone. In conclusion, GelDex-S58 could reduce scar formation after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Yi Lin
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wangdu Luo
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bingcai Jiang
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyi Lin
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Tang
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangji Li
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Su G, Li G, Wang W, Xu L. Application Prospect and Preliminary Exploration of GelMA in Corneal Stroma Regeneration. Polymers (Basel) 2022; 14:polym14194227. [PMID: 36236174 PMCID: PMC9571618 DOI: 10.3390/polym14194227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Corneal regeneration has become a prominent study area in recent decades. Because the corneal stroma contributes about 90% of the corneal thickness in the corneal structure, corneal stromal regeneration is critical for the treatment of cornea disease. Numerous materials, including deacetylated chitosan, hydrophilic gel, collagen, gelatin methacrylate (GelMA), serine protein, glycerol sebacate, and decellularized extracellular matrix, have been explored for keratocytes regeneration. GelMA is one of the most prominent materials, which is becoming more and more popular because of its outstanding three-dimensional scaffold structure, strong mechanics, good optical transmittance, and biocompatibility. This review discussed recent research on corneal stroma regeneration materials and related GelMA.
Collapse
|