1
|
Kellner S, Weinitz S, Farmand G, Kellner U. Near-Infrared Autofluorescence: Early Detection of Retinal Pigment Epithelial Alterations in Inherited Retinal Dystrophies. J Clin Med 2024; 13:6886. [PMID: 39598030 PMCID: PMC11594703 DOI: 10.3390/jcm13226886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Near-infrared autofluorescence (NIA) is a non-invasive retinal imaging technique used to examine the retinal pigment epithelium (RPE) based on the autofluorescence of melanin. Melanin has several functions within RPE cells. It serves as a protective antioxidative factor and is involved in the phagocytosis of photoreceptor outer segments. Disorders affecting the photoreceptor-RPE complex result in alterations of RPE cells which are detectable by alterations of NIA. NIA allows us to detect early alterations in various chorioretinal disorders, frequently before they are ophthalmoscopically visible and often prior to alterations in lipofuscin-associated fundus autofluorescence (FAF) or optical coherence tomography (OCT). Although NIA and FAF relate to disorders affecting the RPE, the findings for both imaging methods differ and the area involved has been demonstrated to be larger in NIA compared to FAF in several disorders, especially inherited retinal dystrophies (IRDs), indicating that NIA detects earlier alterations compared to FAF. Foveal alterations can be much more easily detected using NIA compared to FAF. A reduced subfoveal NIA intensity is the earliest sign of autosomal dominant Best disease, when FAF and OCT are still normal. In other IRDs, a preserved subfoveal NIA intensity is associated with good visual acuity. So far, the current knowledge on NIA in IRD has been presented in multiple separate publications but has not been summarized in an overview. This review presents the current knowledge on NIA in IRD and demonstrates NIA biomarkers.
Collapse
Affiliation(s)
- Simone Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Silke Weinitz
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| | - Ghazaleh Farmand
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
| | - Ulrich Kellner
- Rare Retinal Disease Center, Augen Zentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, 53721 Siegburg, Germany; (S.K.)
- RetinaScience, 53192 Bonn, Germany
| |
Collapse
|
2
|
Gómez-Benlloch A, Garrell-Salat X, Cobos E, López E, Esteve-Garcia A, Ruiz S, Vázquez M, Sararols L, Biarnés M. Optical Coherence Tomography in Inherited Macular Dystrophies: A Review. Diagnostics (Basel) 2024; 14:878. [PMID: 38732293 PMCID: PMC11083341 DOI: 10.3390/diagnostics14090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Macular dystrophies (MDs) constitute a collection of hereditary retina disorders leading to notable visual impairment, primarily due to progressive macular atrophy. These conditions are distinguished by bilateral and relatively symmetrical abnormalities in the macula that significantly impair central visual function. Recent strides in fundus imaging, especially optical coherence tomography (OCT), have enhanced our comprehension and diagnostic capabilities for MD. OCT enables the identification of neurosensory retinal disorganization patterns and the extent of damage to retinal pigment epithelium (RPE) and photoreceptor cells in the dystrophies before visible macular pathology appears on fundus examinations. It not only helps us in diagnostic retinal and choroidal pathologies but also guides us in monitoring the progression of, staging of, and response to treatment. In this review, we summarize the key findings on OCT in some of the most common MD.
Collapse
Affiliation(s)
- Alba Gómez-Benlloch
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Xavier Garrell-Salat
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Estefanía Cobos
- Hospital Universitari de Bellvitge, c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Elena López
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Anna Esteve-Garcia
- Clinical Genetics Unit, Laboratori Clinic Territorial Metropolitada Sud, Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), c/De la Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
| | - Sergi Ruiz
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Meritxell Vázquez
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| | - Laura Sararols
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
- Department of Ophthalmology, Hospital General de Granollers, Av Francesc Ribas s/n, 08402 Granollers, Spain
| | - Marc Biarnés
- Oftalmologia Mèdica i Quirúrgica (OMIQ) Research, c/Tamarit 39, 08205 Sabadell, Spain; (X.G.-S.); (E.L.); (S.R.); (M.V.); (L.S.); (M.B.)
| |
Collapse
|
3
|
Corradetti G, Verma A, Tojjar J, Almidani L, Oncel D, Emamverdi M, Bradley A, Lindenberg S, Nittala MG, Sadda SR. Retinal Imaging Findings in Inherited Retinal Diseases. J Clin Med 2024; 13:2079. [PMID: 38610844 PMCID: PMC11012835 DOI: 10.3390/jcm13072079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent one of the major causes of progressive and irreversible vision loss in the working-age population. Over the last few decades, advances in retinal imaging have allowed for an improvement in the phenotypic characterization of this group of diseases and have facilitated phenotype-to-genotype correlation studies. As a result, the number of clinical trials targeting IRDs has steadily increased, and commensurate to this, the need for novel reproducible outcome measures and endpoints has grown. This review aims to summarize and describe the clinical presentation, characteristic imaging findings, and imaging endpoint measures that are being used in clinical research on IRDs. For the purpose of this review, IRDs have been divided into four categories: (1) panretinal pigmentary retinopathies affecting rods or cones; (2) macular dystrophies; (3) stationary conditions; (4) hereditary vitreoretinopathies.
Collapse
Affiliation(s)
- Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aditya Verma
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jasaman Tojjar
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Louay Almidani
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deniz Oncel
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60153, USA
| | - Mehdi Emamverdi
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
| | - Alec Bradley
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | | | | | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Bianco L, Arrigo A, Antropoli A, Berni A, Saladino A, Vilela MAP, Mansour AM, Bandello F, Battaglia Parodi M. Multimodal imaging in Best Vitelliform Macular Dystrophy: Literature review and novel insights. Eur J Ophthalmol 2024; 34:39-51. [PMID: 36972471 PMCID: PMC10757402 DOI: 10.1177/11206721231166434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Best Vitelliform Macular Dystrophy (BVMD) is a dominantly inherited retinal disease caused by dominant variants in the BEST1 gene. The original classification of BVMD is based on biomicroscopy and color fundus photography (CFP); however, advancements in retinal imaging provided unique structural, vascular, and functional data and novel insights on disease pathogenesis. Quantitative fundus autofluorescence studies informed us that lipofuscin accumulation, the hallmark of BVMD, is unlikely to be a primary effect of the genetic defect. It could be due to a lack of apposition between photoreceptors and retinal pigment epithelium in the macula with subsequent accumulation of shed outer segments over time. Optical Coherence Tomography (OCT) and adaptive optics imaging revealed that vitelliform lesions are characterized by progressive changes in the cone mosaic corresponding to a thinning of the outer nuclear layer and then disruption of the ellipsoid zone, which are associated with a decreased sensitivity and visual acuity. Therefore, an OCT staging system based on lesion composition, thus reflecting disease evolution, has been recently developed. Lastly, the emerging role of OCT Angiography proved a greater prevalence of macular neovascularization, the majority of which are non-exudative and develop in late disease stages. In conclusion, effective diagnosis, staging, and clinical management of BVMD will likely require a deep understanding of the multimodal imaging features of this disease.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Berni
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuel AP Vilela
- Clinical Surgery, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Ahmad M Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
- Department of Ophthalmology, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
5
|
Kalaw FGP, Scott NL, Borooah S. An unusual case of rapid resolution of bilateral vitelliform deposits after discontinuation of pentosan polysulfate sodium. Am J Ophthalmol Case Rep 2023; 32:101875. [PMID: 37645698 PMCID: PMC10461119 DOI: 10.1016/j.ajoc.2023.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose To report the structural and functional changes in a 67-year-old male with pentosan polysulfate sodium (PPS) maculopathy with a progressive resolution of bilateral vitelliform lesions after PPS cessation. Observations The patient was initially seen after taking daily PPS for over 26 years. Three months after discontinuing PPS, the bilateral vitelliform lesions identified on spectral-domain optical coherence tomography (SD-OCT) at initial consultation had completely resolved. Bilateral resolution of vitelliform lesions was associated with a decline in best-corrected visual acuity, and ellipsoid zone disruption on SD-OCT. Conclusions and importance Several PPS maculopathy phenotypes have been previously described including vitelliform lesions. Our case highlights that discontinuing PPS may lead to rapid resolution of vitelliform lesions in PPS maculopathy and may be associated with a rapid reduction in vision.
Collapse
Affiliation(s)
- Fritz Gerald P. Kalaw
- Jacobs Retina Center, University of California San Diego, La Jolla, CA, 92093, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathan L. Scott
- Jacobs Retina Center, University of California San Diego, La Jolla, CA, 92093, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shyamanga Borooah
- Jacobs Retina Center, University of California San Diego, La Jolla, CA, 92093, USA
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Bianco L, Arrigo A, Antropoli A, Del Fabbro S, Panina-Bordignon P, Peri C, Brambilla E, Pina A, Basile G, Hassan Farah R, Saladino A, Aragona E, Cascavilla ML, Bandello F, Battaglia Parodi M, Pulido JS. Association of Circulating Antiretinal Antibodies With Clinical Outcomes in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 38088826 PMCID: PMC10720755 DOI: 10.1167/iovs.64.15.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/22/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose To determine if circulating antiretinal antibodies (ARAs) differ between patients affected by retinitis pigmentosa (RP) and control participants and to assess whether ARAs are associated with clinical outcomes in patients with RP. Methods Cross-sectional study involving a group of patients clinically diagnosed with RP and a control group of healthy participants. Serum autoantibodies against enolase, heat shock protein 70 (HSP70), and carbonic anhydrase II (CAII) were tested in all participants using Jess capillary Western blot. We compared ARA prevalence between the RP and control groups and investigated the association of serum ARA positivity with macular edema and vitreomacular disorders in patients affected by RP. Results Thirty-six patients affected by RP and a control group of 39 healthy individuals were included. Overall, at least one ARA positivity was detected in 89% and 80% of participants in the RP and control groups, respectively. We observed a similar prevalence of anti-CAII and anti-enolase ARA between patients and controls (P = 0.87 and P = 0.35, respectively). Sera from patients with RP tested positive for anti-HSP70 ARAs more frequently than those from controls (53% vs. 36%), albeit without reaching statistical significance (P = 0.29). Among the 72 eyes with RP, 25% presented with macular edema (most often bilateral) and 33% with epiretinal membrane and/or lamellar macular hole. None of the three ARAs was associated with an increased risk of any macular complications in eyes affected by RP (all P > 0.05). Conclusions The prevalence of circulating ARAs against enolase, HSP70, and CAII is similar between patients affected by RP and healthy individuals. Our results provide evidence against the association of ARAs with macular edema and vitreomacular interface disorders in RP.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Sebastiano Del Fabbro
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- University Vita-Salute San Raffaele, Milan, Italy
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carolina Peri
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Brambilla
- University Vita-Salute San Raffaele, Milan, Italy
- Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adelaide Pina
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Basile
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rashid Hassan Farah
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Jose S. Pulido
- Larry Donoso Chair of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, Pennsylvania, United States
| |
Collapse
|
7
|
Bianco L, Arrigo A, Marchese A, Antropoli A, Aragona E, La Franca L, Mauro L, Pina A, Hassan Farah R, Basile G, Bandello F, Battaglia Parodi M. Fixation Location and Stability in Best Vitelliform Macular Dystrophy. OPHTHALMOLOGY SCIENCE 2023; 3:100329. [PMID: 37304042 PMCID: PMC10251068 DOI: 10.1016/j.xops.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023]
Abstract
Purpose To analyze fixation location and stability in best vitelliform macular dystrophy (BVMD) and test their association with best-corrected visual acuity (BCVA). Design Observational, cross-sectional study. Participants Thirty patients (55 eyes) affected by genetically confirmed BVMD were followed up at the Retinal Heredodystrophies Unit of IRCCS San Raffaele Scientific Institute, Milan. Methods Patients underwent testing with macular integrity assessment (MAIA) microperimeter. Fixation location was measured as distance in degrees (°) between preferred retinal locus (PRL) and estimated fovea location (EFL); fixation was defined as eccentric when the distance between PRL and EFL exceeded 2°. Fixation stability was graded as stable, relatively unstable, or unstable and expressed as bivariate contour ellipse area (BCEA, °2). Main Outcome Measures Fixation location and stability. Results The median distance of the PRL from the anatomic fovea was 0.7°, and fixation location was eccentric in 27% of eyes. Fixation was graded as stable in 64% of eyes, relatively unstable in 13%, and unstable in 24%, with a median 95% BCEA of 6.2°2. The atrophic/fibrotic stage was associated with worse fixation parameters (all P < 0.01). Both PRL eccentricity and fixation stability were linearly associated with BCVA: every 1° increase in PRL eccentricity was associated with a 0.07 logarithm of the minimum angle of resolution (logMAR) worse BCVA (P < 0.0001) while every 1°2 increase in 95% BCEA was associated with a 0.01 logMAR worse BCVA (P < 0.001). No significant intereye correlation was found for PRL eccentricity and fixation stability, as well as no association between the patient's age and fixation parameters. Conclusions We demonstrated that most eyes affected by BVMD retain a central stable fixation and provided evidence that both fixation eccentricity and stability are strongly associated with visual acuity in BVMD. These parameters may serve as secondary end points for future clinical trials. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
| | - Alessandro Arrigo
- Correspondence: Alessandro Arrigo, MD, Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, via Olgettina, 60, Milan 20132, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Iovino C, Ramtohul P, Au A, Romero-Morales V, Sadda S, Freund KB, Sarraf D. Vitelliform maculopathy: Diverse etiologies originating from one common pathway. Surv Ophthalmol 2023; 68:361-379. [PMID: 36720370 DOI: 10.1016/j.survophthal.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Vitelliform lesions (VLs) are associated with a wide array of macular disorders but are the result of one common pathway: retinal pigment epithelium (RPE) impairment and phagocytic dysfunction. VLs are defined by the accumulation of yellowish subretinal material. In the era of multimodal advanced retinal imaging, VLs can be further characterized by subretinal hyperreflectivity with optical coherence tomography and hyperautofluorescence with fundus autofluorescence. VLs can be the result of genetic or acquired retinal diseases. In younger patients, VLs usually occur in the setting of Best disease. Additional genetic causes of VL include pattern dystrophy or adult-onset vitelliform macular dystrophy. In older patients, acquired VLs can be associated with a broad spectrum of etiologies, including tractional, paraneoplastic, toxic, and degenerative disorders. The main cause of visual morbidity in eyes with VLs is the onset of macular atrophy and macular neovascularization. Histopathological studies have provided new insights into the location, nature, and lifecycle of the vitelliform material comprised of melanosomes, lipofuscin, melanolipofuscin, and outer segment debris located between the RPE and photoreceptor layer. Impaired phagocytosis by the RPE cells is the unifying pathway leading to VL development. We discuss and summarize the nature, pathogenesis, multimodal imaging characteristics, etiologies, and natural course of vitelliform maculopathies.
Collapse
Affiliation(s)
- Claudio Iovino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Prithvi Ramtohul
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Adrian Au
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Veronica Romero-Morales
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - SriniVas Sadda
- Doheny Image Reading Center, Doheny Eye Institute, University of California Los Angeles (UCLA) Affiliated, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of New York, New York, NY, USA
| | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA; Greater Los Angeles Veterans Affairs Healthcare Center, Los Angeles, CA, USA.
| |
Collapse
|