1
|
Iseri E, Kosta P, Pollalis D, Lo PA, Tew BY, Louie S, Salhia B, Humayun M, Lazzi G. Characterization of Induced Current Density During Transcorneal Electrical Stimulation to Promote Neuroprotection in the Degenerating Retina. IEEE Trans Biomed Eng 2024; 71:3221-3231. [PMID: 38861449 PMCID: PMC11511633 DOI: 10.1109/tbme.2024.3412814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Transcorneal electrical stimulation (TES) is a promising approach to delay retinal degeneration by inducing extracellular electric field-driven neuroprotective effects within photoreceptors. Although achieving precise electric field control is feasible in vitro, characterizing these fields becomes intricate and largely unexplored in vivo due to uneven distribution in the heterogeneous body. In this paper, we investigate and characterize electric fields within the retina during TES to assess the potential for therapeutic approaches Methods: We developed a computational model of a rat's head, enabling us to generate predictive simulations of the voltage and current density induced in the retina. Subsequently, an in vivo experimental setup involving Royal College of Surgeon (RCS) rats was implemented to measure the voltage across the retina using identical electrode configurations as employed in the simulations. RESULTS A stimulation amplitude of 0.2-0.3 mA may be necessary during TES in rats to induce a current density of at least 20 A/[Formula: see text] in the retina, which is the lower limit for triggering neuroprotective effects according to culture studies on neural cells. Measurement taken from cadaveric pigs' eyes revealed that a stimulation amplitude of 1 mA is necessary for achieving the same current density. CONCLUSION The computational modeling approach presented in this study was validated with experimental data and can be leveraged for predictive simulations to optimize the electrode design and stimulation parameters of TES. SIGNIFICANCE Once validated, the flexibility and low research cost of computational models are valuable in optimization studies where testing on live subjects is not feasible.
Collapse
|
2
|
Gunes K, Chang K, Lennikov A, Tai WL, Chen J, ElZaridi F, Cho KS, Utheim TP, Dong Feng C. Preservation of vision by transpalpebral electrical stimulation in mice with inherited retinal degeneration. Front Cell Dev Biol 2024; 12:1412909. [PMID: 39206091 PMCID: PMC11349514 DOI: 10.3389/fcell.2024.1412909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The potential neuroprotective and regenerative properties of electrical stimulation (ES) were studied in rhodopsin knockout mice (Rho -/- ), a murine model of inherited retinal degeneration. The study focused on assessing the impact of varying ES frequencies on visual functions and photoreceptor cell survival in Rho -/- mice. Methods To elucidate the impact of electrical stimulation on cone survival, Rho -/- mice received either sham or transpalpebral ES using biphasic ramp or rectangular waveforms at 100 µA amplitude, starting at six weeks of age. The treatment duration spanned from one to three weeks. The optimal treatment frequency of ES sessions was determined by applying ES every one, two, or three days in three separate groups of Rho -/- mice. The sham group received daily treatments without the application of ES. Results Our study revealed significant improvement of visual function in Rho -/- mice following daily or every-other-day noninvasive transpalpebral ES, as evidenced by electroretinogram and optomotor response-based visual behavior assays. Concurrently, assessment of outer nuclear thickness and immunohistochemistry for the cone photoreceptor cell marker PNA demonstrated pronounced increases in the survival of rods and cones and improvement in the morphology of the inner and outer segments. Discussion This study underscores the protective effect of non-invasive ES in rhodopsin knockout-induced retinal degenerative disorders, providing a foundation for developing targeted therapeutic interventions for retinitis pigmentosa.
Collapse
Affiliation(s)
- Kasim Gunes
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Türkiye
| | - Karen Chang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Wai Lydia Tai
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Farris ElZaridi
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Tor Paaske Utheim
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Chen Dong Feng
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Abbott CJ, Allen PJ, Williams CE, Williams RA, Epp SB, Burns O, Thomas R, Harrison M, Thien PC, Saunders A, McGowan C, Sloan C, Luu CD, Nayagam DAX. Chronic electrical stimulation with a peripheral suprachoroidal retinal implant: a preclinical safety study of neuroprotective stimulation. Front Cell Dev Biol 2024; 12:1422764. [PMID: 38966426 PMCID: PMC11222648 DOI: 10.3389/fcell.2024.1422764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Purpose Extraocular electrical stimulation is known to provide neuroprotection for retinal cells in retinal and optic nerve diseases. Currently, the treatment approach requires patients to set up extraocular electrodes and stimulate potentially weekly due to the lack of an implantable stimulation device. Hence, a minimally-invasive implant was developed to provide chronic electrical stimulation to the retina, potentially improving patient compliance for long-term use. The aim of the present study was to determine the surgical and stimulation safety of this novel device designed for neuroprotective stimulation. Methods Eight normally sighted adult feline subjects were monocularly implanted in the suprachoroidal space in the peripheral retina for 9-39 weeks. Charge balanced, biphasic, current pulses (100 μA, 500 µs pulse width and 50 pulses/s) were delivered continuously to platinum electrodes for 3-34 weeks. Electrode impedances were measured hourly. Retinal structure and function were assessed at 1-, 2-, 4-, 6- and 8-month using electroretinography, optical coherence tomography and fundus photography. Retina and fibrotic thickness were measured from histological sections. Randomized, blinded histopathological assessments of stimulated and non-stimulated retina were performed. Results All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. The device position was stable after a post-surgery settling period. Median electrode impedance remained within a consistent range (5-10 kΩ) over time. There was no change in retinal thickness or function relative to baseline and fellow eyes. Fibrotic capsule thickness was equivalent between stimulated and non-stimulated tissue and helps to hold the device in place. There was no scarring, insertion trauma, necrosis, retinal damage or fibroblastic response in any retinal samples from implanted eyes, whilst 19% had a minimal histiocytic response, 19% had minimal to mild acute inflammation and 28% had minimal to mild chronic inflammation. Conclusion Chronic suprathreshold electrical stimulation of the retina using a minimally invasive device evoked a mild tissue response and no adverse clinical findings. Peripheral suprachoroidal electrical stimulation with an implanted device could potentially be an alternative approach to transcorneal electrical stimulation for delivering neuroprotective stimulation.
Collapse
Affiliation(s)
- Carla J. Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery (Ophthalmology), University of Melbourne, East Melbourne, VIC, Australia
| | - Penelope J. Allen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery (Ophthalmology), University of Melbourne, East Melbourne, VIC, Australia
- Vitreoretinal Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Chris E. Williams
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
| | - Richard A. Williams
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
- Dorevitch Pathology, Heidelberg, VIC, Australia
| | | | - Owen Burns
- Bionics Institute, East Melbourne, VIC, Australia
| | - Ross Thomas
- Bionics Institute, East Melbourne, VIC, Australia
| | | | - Patrick C. Thien
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
| | | | | | | | - Chi D. Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery (Ophthalmology), University of Melbourne, East Melbourne, VIC, Australia
| | - David A. X. Nayagam
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Stürmer S, Bolz S, Zrenner E, Ueffing M, Haq W. Sustained Extracellular Electrical Stimulation Modulates the Permeability of Gap Junctions in rd1 Mouse Retina with Photoreceptor Degeneration. Int J Mol Sci 2024; 25:1616. [PMID: 38338908 PMCID: PMC10855676 DOI: 10.3390/ijms25031616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurons build vast gap junction-coupled networks (GJ-nets) that are permeable to ions or small molecules, enabling lateral signaling. Herein, we investigate (1) the effect of blinding diseases on GJ-nets in mouse retinas and (2) the impact of electrical stimulation on GJ permeability. GJ permeability was traced in the acute retinal explants of blind retinal degeneration 1 (rd1) mice using the GJ tracer neurobiotin. The tracer was introduced via the edge cut method into the GJ-net, and its spread was visualized in histological preparations (fluorescent tagged) using microscopy. Sustained stimulation was applied to modulate GJ permeability using a single large electrode. Our findings are: (1) The blind rd1 retinas displayed extensive intercellular coupling via open GJs. Three GJ-nets were identified: horizontal, amacrine, and ganglion cell networks. (2) Sustained stimulation significantly diminished the tracer spread through the GJs in all the cell layers, as occurs with pharmaceutical inhibition with carbenoxolone. We concluded that the GJ-nets of rd1 retinas remain coupled and functional after blinding disease and that their permeability is regulatable by sustained stimulation. These findings are essential for understanding molecular signaling in diseases over coupled networks and therapeutic approaches using electrical implants, such as eliciting visual sensations or suppressing cortical seizures.
Collapse
Affiliation(s)
| | | | | | | | - Wadood Haq
- Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
5
|
Shinozaki Y, Namekata K, Guo X, Harada T. Glial cells as a promising therapeutic target of glaucoma: beyond the IOP. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1310226. [PMID: 38983026 PMCID: PMC11182302 DOI: 10.3389/fopht.2023.1310226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 07/11/2024]
Abstract
Glial cells, a type of non-neuronal cell found in the central nervous system (CNS), play a critical role in maintaining homeostasis and regulating CNS functions. Recent advancements in technology have paved the way for new therapeutic strategies in the fight against glaucoma. While intraocular pressure (IOP) is the most well-known modifiable risk factor, a significant number of glaucoma patients have normal IOP levels. Because glaucoma is a complex, multifactorial disease influenced by various factors that contribute to its onset and progression, it is imperative that we consider factors beyond IOP to effectively prevent or slow down the disease's advancement. In the realm of CNS neurodegenerative diseases, glial cells have emerged as key players due to their pivotal roles in initiating and hastening disease progression. The inhibition of dysregulated glial function holds the potential to protect neurons and restore brain function. Consequently, glial cells represent an enticing therapeutic candidate for glaucoma, even though the majority of glaucoma research has historically concentrated solely on retinal ganglion cells (RGCs). In addition to the neuroprotection of RGCs, the proper regulation of glial cell function can also facilitate structural and functional recovery in the retina. In this review, we offer an overview of recent advancements in understanding the non-cell-autonomous mechanisms underlying the pathogenesis of glaucoma. Furthermore, state-of-the-art technologies have opened up possibilities for regenerating the optic nerve, which was previously believed to be incapable of regeneration. We will also delve into the potential roles of glial cells in the regeneration of the optic nerve and the restoration of visual function.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
6
|
Li J, Zhou W, Liang L, Li Y, Xu K, Li X, Huang Z, Jin Y. Noninvasive electrical stimulation as a neuroprotective strategy in retinal diseases: a systematic review of preclinical studies. J Transl Med 2024; 22:28. [PMID: 38184580 PMCID: PMC10770974 DOI: 10.1186/s12967-023-04766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Electrical activity has a crucial impact on the development and survival of neurons. Numerous recent studies have shown that noninvasive electrical stimulation (NES) has neuroprotective action in various retinal disorders. OBJECTIVE To systematically review the literature on in vivo studies and provide a comprehensive summary of the neuroprotective action and the mechanisms of NES on retinal disorders. METHODS Based on the PRISMA guideline, a systematic review was conducted in PubMed, Web of Science, Embase, Scopus and Cochrane Library to collect all relevant in vivo studies on "the role of NES on retinal diseases" published up until September 2023. Possible biases were identified with the adopted SYRCLE's tool. RESULTS Of the 791 initially gathered studies, 21 articles met inclusion/exclusion criteria for full-text review. The results revealed the neuroprotective effect of NES (involved whole-eye, transcorneal, transscleral, transpalpebral, transorbital electrical stimulation) on different retinal diseases, including retinitis pigmentosa, retinal degeneration, high-intraocular pressure injury, traumatic optic neuropathy, nonarteritic ischemic optic neuropathy. NES could effectively delay degeneration and apoptosis of retinal neurons, preserve retinal structure and visual function with high security, and its mechanism of action might be related to promoting the secretion of neurotrophins and growth factors, decreasing inflammation, inhibiting apoptosis. The quality scores of included studies ranged from 5 to 8 points (a total of 10 points), according to SYRCLE's risk of bias tool. CONCLUSION This systematic review indicated that NES exerts neuroprotective effects on retinal disease models mainly through its neurotrophic, anti-inflammatory, and anti-apoptotic capabilities. To assess the efficacy of NES in a therapeutic setting, however, well-designed clinical trials are required in the future.
Collapse
Affiliation(s)
- Jiaxian Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Wei Zhou
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Lina Liang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China.
| | - Yamin Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Kai Xu
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Xiaoyu Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Ziyang Huang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Yu Jin
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| |
Collapse
|
7
|
Wagner S, Süer E, Sigdel B, Zrenner E, Strasser T. Monocular transcorneal electrical stimulation induces ciliary muscle thickening in contralateral eye. Exp Eye Res 2023; 231:109475. [PMID: 37061116 DOI: 10.1016/j.exer.2023.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Transcorneal electrical stimulation (TES) is used as therapy for retinal diseases such as retinitis pigmentosa (RP) and was suggested for assessing retinal sensitivity by determining phosphene thresholds, subjective luminance impressions caused by retinal stimulation. Further applications concerned the accommodation process, revealing an improved accommodative amplitude in presbyopic eyes after TES treatment. The respective changes of the ciliary muscle (CM), the structure most important for near vision, during TES are yet unknown. In a pilot study, we aimed to assess whether monocular TES leads to morphological and functional CM changes and whether central accommodation control is affected. Ten healthy, near-emmetropic adults participated in the trial (4 females, age 26.3 ± 3.6 years). Using a wavefront and a stimulus generator, a biphasic square-wave stimulus (2 s positive and 6 s negative amplitude) of 0 μA average current was produced and transferred to the eye by means of a Dawson-Trick & Litzkow electrode. Prior to the stimulation, an individual determination of phosphene thresholds served to define individual TES current amplitudes, which ranged between 60 and 100 μA. Optical coherence tomography (OCT) imaging of the right eye's temporal ciliary muscle was performed before and during ipsi-as well as contralateral monocular TES in randomized order in the morning and afternoon of the same day. During imaging, subjects fixated a target at 4 m distance and refraction was simultaneously recorded via eccentric infrared photorefraction. OCT images were assessed using previously published custom-developed software, allowing the definition of selective CM thickness (CMT) readings, and plotting of continuous CMT profiles along the muscle border. CMT profiles revealed that both stimulations, on the ipsi- and contralateral eye, induced a thickening of the CM compared to the non-stimulated state. The selective CMT readings confirmed a significant increase with ipsi- (31 ± 30 μm; p = 0.010) and contralateral (25 ± 16 μm; p = 0.001) TES. However, refraction during far vision was not significantly affected by either stimulation (ipsilateral [n = 5]: median Δw/-w/o = 0 D; contralateral [n = 7]: Δw/-w/o = 0.13 D). Pupil size on average increased during TES, but without reaching significance (ipsilateral [n = 5] median Δw/-w/o = 0.23 mm, contralateral [n = 7] Δw/-w/o = 0.39 mm). Ipsilateral CM thickening could be explained by local changes within the stimulated ciliary muscle, such as increased blood flow or interstitial fluid rise induced by TES. However, the CMT increase in the right eye when TES was performed contralaterally, on the left eye, indicates an involvement of the central control circuit of accommodation. Further possible explanations for this finding are a synchronization of neuronal activities in the visual pathway, the release of vasoactive neuropeptides, or effects on the central blood pressure regulation. Given a neuromodulation effect on the CM function, TES might have implications for children with accommodation insufficiencies and as additional therapy in myopia control management, e.g. in combination with multifocal contact lens treatment. Our study is important for the clinical application of TES, and the outcome might add crucial knowledge to the current understanding of the accommodation process and inform research and treatment of both myopia and presbyopia.
Collapse
Affiliation(s)
- Sandra Wagner
- Institute for Ophthalmic Research, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany.
| | - Esra Süer
- Institute for Ophthalmic Research, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany.
| | - Bishesh Sigdel
- Institute for Ophthalmic Research, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany.
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany; University Eye Hospital Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany; Werner Reichardt Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Str. 25, 72076, Tuebingen, Germany.
| | - Torsten Strasser
- Institute for Ophthalmic Research, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany; University Eye Hospital Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany.
| |
Collapse
|