Nam J, Nivison-Smith L, Trinh M. Spatial Analysis Reveals Vascular Changes in Retinal and Choroidal Vessel Perfusion in Intermediate AMD With Reticular Pseudodrusen.
Invest Ophthalmol Vis Sci 2024;
65:33. [PMID:
38386332 PMCID:
PMC10896234 DOI:
10.1167/iovs.65.2.33]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose
To examine the effect of reticular pseudodrusen (RPD) on retinal and choroidal vessel perfusion (VP) topography in intermediate age-related macular degeneration (iAMD) using refined spatial analyses.
Methods
This was a retrospective cross-sectional study of 120 individuals with 30 iAMDRPD, 60 iAMDno_RPD, and 30 normal eyes, propensity-score matched by age, sex, and presence of cardiovascular-related disease. VP of the superficial and deep retinal and choriocapillaris vascular slabs was assessed from 6 × 6-mm optical coherence tomography angiography (OCTA) scans divided into 126 × 126 grids, with adjustment for various person- and eye-level factors. Grid-wise VP differences (%) among the groups were spatially assessed according to analyses based on the Early Treatment for Diabetic Retinopathy Study (ETDRS), eccentricity (µm), and degree (°).
Results
VP was significantly decreased between iAMDRPD and iAMDno_RPD, across all vascular slabs in various ETDRS sectors (up to -2.16%; 95% confidence interval, -2.99 to -1.34; P < 0.05). Eccentricity analyses revealed more complex patterns: a bisegmented relationship where VP in iAMDRPD eyes decreased linearly toward 1000 µm then returned toward similar values as iAMDno_RPD, plateauing around 2000 µm in the superficial and 3000 µm in the deep retina (R2 = 0.57-0.9; P < 0.001). Degree-based analysis further showed that the greatest VP differences in iAMDRPD eyes were commonly located superiorly and nasally across all vascular slabs (P < 0.05).
Conclusions
RPD appears to compound the vascular impact of iAMD, displaying complex spatial patterns beyond the ETDRS sectors. This highlights the importance of considering spatial delineations for future work regarding the role of RPD and vascular dysfunction.
Collapse