1
|
Rafael D, Guerrero M, Marican A, Arango D, Sarmento B, Ferrer R, Durán-Lara EF, Clark SJ, Schwartz S. Delivery Systems in Ocular Retinopathies: The Promising Future of Intravitreal Hydrogels as Sustained-Release Scaffolds. Pharmaceutics 2023; 15:1484. [PMID: 37242726 PMCID: PMC10220769 DOI: 10.3390/pharmaceutics15051484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Slow-release delivery systems are needed to ensure long-term sustained treatments for retinal diseases such as age-related macular degeneration and diabetic retinopathy, which are currently treated with anti-angiogenic agents that require frequent intraocular injections. These can cause serious co-morbidities for the patients and are far from providing the adequate drug/protein release rates and required pharmacokinetics to sustain prolonged efficacy. This review focuses on the use of hydrogels, particularly on temperature-responsive hydrogels as delivery vehicles for the intravitreal injection of retinal therapies, their advantages and disadvantages for intraocular administration, and the current advances in their use to treat retinal diseases.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), 20 ICTS Nanbiosis, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Marcelo Guerrero
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Adolfo Marican
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação, Saúde Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| | - Roser Ferrer
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| | - Esteban F. Durán-Lara
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Simon J. Clark
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Simo Schwartz
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| |
Collapse
|
2
|
Abud MB, Baranov P, Patel S, Hicks CA, Isaac DLC, Louzada RN, Dromel P, Singh D, Sinden J, Ávila MP, Young M. In vivo study to assess dosage of allogeneic pig retinal progenitor cells: Long-term survival, engraftment, differentiation and safety. J Cell Mol Med 2022; 26:3254-3268. [PMID: 35481949 PMCID: PMC9170813 DOI: 10.1111/jcmm.17332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 12/02/2022] Open
Abstract
Despite notable efforts and significant therapeutical advances, age‐related macular degeneration remains the single most common reason for vision loss. Retinal progenitor cells (RPCs) are considered promising candidates for cellular treatments that repair and restore vision. In this allogenic study, the phenotypic profile of pig and human RPCs derived using similar manufacturing processes is compared. The long‐term (12‐week) survival of green fluorescent protein‐pig retinal progenitor cells GFP‐pRPC after subretinal transplantation into normal miniature pig (mini‐pig) retina is investigated. Human eyes are both anatomically and physiologically mimicked by pig eyes, so the pig is an ideal model to show an equivalent way of delivering cells, immunological response and dosage. The phenotypic equivalency of porcine and clinically intended human RPCs was established. Thirty‐nine mini‐pigs are used in this study, and vehicle‐injected eyes and non‐injected eyes serve as controls. Six groups are given different dosages of pRPCs, and the cells are found to survive well in all groups. At 12 weeks, strong evidence of integration is indicated by the location of the grafted cells within the neuro‐retina, extension of processes to the plexiform layers and expression of key retinal markers such as recoverin, rhodopsin and synaptophysin. No immunosuppression is used, and no immune response is found in any of the groups. No pRPC‐related histopathology findings are reported in the major organs investigated. An initial dose of 250 k cells in 100 µl of buffer is established as an appropriate initial dose for future human clinical trials.
Collapse
Affiliation(s)
- Murilo Batista Abud
- Federal University of Goias, Goiania, GO, Brazil.,Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Ricardo Noguera Louzada
- Federal University of Goias, Goiania, GO, Brazil.,Postgraduate Program in Surgical Science, School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pierre Dromel
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Deepti Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Michael Young
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Li QY, Zou T, Gong Y, Chen SY, Zeng YX, Gao LX, Weng CH, Xu HW, Yin ZQ. Functional assessment of cryopreserved clinical grade hESC-RPE cells as a qualified cell source for stem cell therapy of retinal degenerative diseases. Exp Eye Res 2020; 202:108305. [PMID: 33080300 DOI: 10.1016/j.exer.2020.108305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023]
Abstract
The biosafety and efficiency of transplanting retinal pigment epithelial (RPE) cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been evaluated in phase I and phase II clinical trials. For further large-scale application, cryopreserved RPE cells must be used; thus, it is highly important to investigate the influence of cryopreservation and thawing on the biological characteristics of hESC-RPE cells and their post-transplantation vision-restoring function. Here, via immunofluorescence, qPCR, transmission electron microscopy, transepithelial electrical resistance, and enzyme-linked immunosorbent assays (ELISAs), we showed that cryopreserved hESC-RPE cells retained the specific gene expression profile, morphology, ultrastructure, and maturity-related functions of induced RPE cells. Additionally, cryopreserved hESC-RPE cells exhibited a polarized monolayer, tight junction, and gap junction structure and an in vitro nanoparticle phagocytosis capability similar to those of induced hESC-RPE cells. However, the level of pigment epithelium-derived factor (PEDF) secretion was significantly decreased in cryopreserved hESC-RPE cells. Royal College of Surgeons rats with cryopreserved hESC-RPE cells engrafted into the subretinal space exhibited a significant decrease in the b-wave amplitude compared with rats engrafted with induced hESC-RPE cells at 4 weeks post transplantation. However, the difference disappeared at 8 weeks and 12 weeks post operation. No significant difference in the outer nuclear layer (ONL) thickness was observed between the two groups. Our data showed that even after cryopreservation and thawing, cryopreserved hESC-RPE cells are still qualified as a donor cell source for cell-based therapy of retinal degenerative diseases.
Collapse
Affiliation(s)
- Qi-You Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Ting Zou
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Si-Yu Chen
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Yu-Xiao Zeng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Li-Xiong Gao
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China; Department of Ophthalmology, The 6th Medical Center of PLA General Hospital, Beijing, China
| | - Chuan-Huang Weng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Hai-Wei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
| | - Zheng-Qin Yin
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
| |
Collapse
|
4
|
Dexamethasone Provides Effective Immunosuppression for Improved Survival of Retinal Organoids after Epiretinal Transplantation. Stem Cells Int 2019; 2019:7148032. [PMID: 31428159 PMCID: PMC6683795 DOI: 10.1155/2019/7148032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/31/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022] Open
Abstract
We investigated the efficacy of the immunosuppressants rapamycin (RAP) and dexamethasone (DEX) in improving the survival of retinal organoids after epiretinal transplantation. We first compared the immunosuppressive abilities of DEX and RAP in activated microglia in an in vitro setting. Following this, we used immunofluorescence, real-time polymerase chain reaction, and flow cytometry to investigate the effects of DEX and RAP on cells in the retinal organoids. Retinal organoids were then seeded onto poly(lactic-co-glycolic) acid (PLGA) scaffolds and implanted into rhesus monkey eyes (including a healthy individual and three monkeys with chronic ocular hypertension (OHT) induction) and subjected to different post-operative immunosuppressant treatments; 8 weeks after the experiment, histological examinations were carried out to assess the success of the different treatments. Our in vitro experiments indicated that both DEX and RAP treatments were equally effective in suppressing microglial activity. Although both immunosuppressants altered the morphologies of cells in the retinal organoids and caused a slight decrease in the differentiation of cells into retinal ganglion cells, the organoid cells retained their capacity to grow and differentiate into retinal tissues. Our in vivo experiments indicate that the retinal organoid can survive and differentiate into retinal tissues in a healthy rhesus monkey eye without immunosuppressive treatment. However, the survival and differentiation of these organoids in OHT eyes was successful only with the DEX treatment. RAP treatment was ineffective in preventing immunological rejection, and the retinal organoid failed to survive until the end of 8 weeks. DEX is likely a promising immunosuppressant to enhance the survival of epiretinal implants.
Collapse
|
5
|
Park J, Baranov P, Aydin A, Abdelgawad H, Singh D, Niu W, Kurisawa M, Spector M, Young MJ. In Situ Cross-linking Hydrogel as a Vehicle for Retinal Progenitor Cell Transplantation. Cell Transplant 2019; 28:596-606. [PMID: 30917696 PMCID: PMC7103606 DOI: 10.1177/0963689719825614] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One of the current limitations of retinal transplantation of stem cells as well as other cell types is the dispersion of cells from the injection site (including loss of cells into the vitreous chamber) and low survival after transplantation. Gelatin-hydroxyphenyl propionic acid (Gtn-HPA) conjugate is a biodegradable polymer that can undergo covalent cross-linking in situ, allowing for injection of incorporated cells through a small caliber needle followed by gel formation in vivo. We tested the hypothesis that Gtn-HPA hydrogel supports survival and integration of retinal progenitor cells (RPCs) post-transplantation. In vitro compatibility and in vivo graft survival were assessed by mixing an equal volume of Gtn-HPA conjugate and RPC suspension and triggering enzyme-mediated gelation, using minute amounts of horseradish peroxidase and peroxide. Immunocytochemistry showed >80% survival of cells and minimal apoptosis for cells incorporated into Gtn-HPA, equivalent to controls grown on fibronectin-coated flasks. RPCs undergoing mitosis were seen within the three-dimensional Gtn-HPA hydrogel, but the percentage of Ki-67-positive cells was lower compared with the monolayer controls. For in vivo studies, gel-cell mixture or cell suspension in saline was trans-sclerally injected into the left eye of female Long Evans rats immunosuppressed with cyclosporine A. Grafts survived at the 1 week time point of the study, with Gtn-HPA-delivered grafts showing less inflammatory response demonstrated by anti-leukocyte staining. More eyes in the gel-cell mixture group showed surviving cells in the subretinal space compared with saline-delivered controls, while the number of cells surviving per graft was not significantly different between the two groups. This work demonstrates an injectable in situ cross-linking hydrogel as a potential vehicle for stem cell delivery in the retina.
Collapse
Affiliation(s)
- Jeayoung Park
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.,2 Yale School of Medicine, New Haven, CT, USA
| | - Petr Baranov
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Aybike Aydin
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Hany Abdelgawad
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Deepti Singh
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Wanting Niu
- 3 Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Myron Spector
- 3 Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael J Young
- 1 Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
6
|
Cellular regeneration strategies for macular degeneration: past, present and future. Eye (Lond) 2018; 32:946-971. [PMID: 29503449 PMCID: PMC5944658 DOI: 10.1038/s41433-018-0061-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 01/12/2023] Open
Abstract
Despite considerable effort and significant therapeutic advances, age-related macular degeneration (AMD) remains the commonest cause of blindness in the developed world. Progressive late-stage AMD with outer retinal degeneration currently has no proven treatment. There has been significant interest in the possibility that cellular treatments may slow or reverse visual loss in AMD. A number of modes of action have been suggested, including cell replacement and rescue, as well as immune modulation to delay the neurodegenerative process. Their appeal in this enigmatic disease relate to their generic, non-pathway-specific effects. The outer retina in particular has been at the forefront of developments in cellular regenerative therapies being surgically accessible, easily observable, as well as having a relatively simple architecture. Both the retinal pigment epithelium (RPE) and photoreceptors have been considered for replacement therapies as both sheets and cell suspensions. Studies using autologous RPE, and to a lesser extent, foetal retina, have shown proof of principle. A wide variety of cell sources have been proposed with pluripotent stem cell-derived cells currently holding the centre stage. Recent early-phase trials using these cells for RPE replacement have met safety endpoints and hinted at possible efficacy. Animal studies have confirmed the promise that photoreceptor replacement, even in a completely degenerated outer retina may restore some vision. Many challenges, however, remain, not least of which include avoiding immune rejection, ensuring long-term cellular survival and maximising effect. This review provides an overview of progress made, ongoing studies and challenges ahead.
Collapse
|
7
|
Oswald J, Baranov P. Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol 2018; 10:2515841418774433. [PMID: 29998222 PMCID: PMC6016968 DOI: 10.1177/2515841418774433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
Following the fast pace of the growing field of stem cell research, retinal cell replacement is finally emerging as a feasible mean to be explored for clinical application. Although neuroprotective treatments are able to slow the progression of retinal degeneration caused by diseases such as age-related macular degeneration and glaucoma, they are insufficient to fully halt disease progression and unable to recover previously lost vision. Comprehensive, technological and intellectual advances over the past years, including the in vitro differentiation of retinal cells at manufacturing scale from embryonic stem (ES) cell and induced pluripotent stem (iPS) cell cultures, progress within the area of retinal disease modeling, and the first clinical trials have started to shape the way towards addressing this treatment gap and translating retinal cell replacement to the clinic. Here, summarize the most recent advances within retinal cell replacement from both a scientific and clinical perspective, and discuss the remaining challenges towards the delivery of the first retinal cell products.
Collapse
Affiliation(s)
- Julia Oswald
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA 02114, USA
| | - Petr Baranov
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
8
|
Kametani Y, Ohshima S, Miyamoto A, Shigenari A, Takasu M, Imaeda N, Matsubara T, Tanaka M, Shiina T, Kamiguchi H, Suzuki R, Kitagawa H, Kulski JK, Hirayama N, Inoko H, Ando A. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs. PLoS One 2016; 11:e0164995. [PMID: 27760184 PMCID: PMC5070868 DOI: 10.1371/journal.pone.0164995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022] Open
Abstract
The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
- * E-mail:
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Teaching and Research Support Center, Tokai University School of Medicine, Isehara, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley WA, Australia
| | - Noriaki Hirayama
- Institute of Glycoscience, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|