1
|
Peli E, Jung JH. Review: Binocular double vision in the presence of visual field loss. J Vis 2024; 24:13. [PMID: 38899959 PMCID: PMC11193068 DOI: 10.1167/jov.24.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/13/2024] [Indexed: 06/21/2024] Open
Abstract
Binocular double vision in strabismus is marked by diplopia (seeing the same object in two different directions) and visual confusion (seeing two different objects in the same direction). In strabismus with full visual field, the diplopia coexists with visual confusion across most of the binocular field. With visual field loss, or with use of partial prism segments for field expansion, the two phenomena may be separable. This separability is the focus of this review and offers new insights into binocular function. We show that confusion is necessary but is not sufficient for field expansion. Diplopia plays no role in field expansion but is necessary for clinical testing of strabismus, making such testing difficult in field loss conditions with confusion without diplopia. The roles of the three-dimensional structure of the real world and the dynamic of eye movements within that structure are considered as well. Suppression of one eye's partial view under binocular vision that develops in early-onset (childhood) strabismus is assumed to be a sensory adaption to diplopia. This assumption can be tested using the separation of diplopia and confusion.
Collapse
Affiliation(s)
- Eli Peli
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jae-Hyun Jung
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Han S, Kim S, Jung JH. The effect of visual rivalry in peripheral head-mounted displays on mobility. Sci Rep 2023; 13:20199. [PMID: 37980436 PMCID: PMC10657352 DOI: 10.1038/s41598-023-47427-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023] Open
Abstract
Recent head-mounted displays and smart glasses use vision multiplexing, an optical approach where two or more views are superimposed on each other. In vision multiplexing, augmented information is presented over an observer's natural field of view, providing field expansion and critical information during mobility situations like walking and driving. Yet despite its utility, vision multiplexing may produce visual rivalry, a phenomenon where perception alternates between the augmented information and the background scene for seconds at a time. To investigate, we compared the effect of different peripheral vision multiplexing configurations (unilateral opaque, unilateral see-through and bilateral see-through) on the detection of augmented information, incorporating at the same time real-world characteristics (target eccentricity, depth condition, and gaze movement) for a more realistic assessment. Results showed a persistently lower target detection rate in unilateral configurations than the bilateral configuration, suggesting a larger effect of binocular rivalry on target visibility. Nevertheless, this effect does become attenuated when more naturalistic elements are incorporated, and we discuss recommendations for vision multiplexing design and possible avenues for further research.
Collapse
Affiliation(s)
- Shui'er Han
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sujin Kim
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Jae-Hyun Jung
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
3
|
Peli E, Goldstein R, Jung JH. The Invisibility of Scotomas I: The Carving Hypothesis. Optom Vis Sci 2023; 100:515-529. [PMID: 37499041 PMCID: PMC10510785 DOI: 10.1097/opx.0000000000002048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/04/2023] [Indexed: 07/29/2023] Open
Abstract
SIGNIFICANCE Veridical depictions of scene appearance with scotomas allow better understanding of the impact of field loss and may improve the development and implementation of rehabilitation. Explanation and depiction of the invisibility of scotoma may lead to patients' understanding and thus better compliance with related treatments. PURPOSE Simulations of perception with scotomas guide training, patient education, and rehabilitation research. Most simulations incorrectly depict scotomas as black patches, although the scotomas and the missing contents are usually invisible to patients. We present a novel approach to capture the reported appearance of scenes with scotomas. METHODS We applied a content-aware image resizing algorithm to carve out the content elided under the scotomas. With video sequences, we show how and why eye movements fail to increase the visibility of the carved scotomas. RESULTS Numerous effects, reported by patients, emerge naturally from the scotoma carving. Carving-eliminated scotomas over natural images are barely visible, despite causing substantial distortions. Low resolution and contrast sensitivity at farther eccentricities and saccadic blur reduce the visibility of the distortions. In a walking scenario, static objects moving smoothly to the periphery disappear into and then reemerge out of peripheral scotomas, invisibly. CONCLUSIONS Scotoma carving provides a viable hypothetical simulation of vision with scotomas due to loss of neurons at the retinal ganglion cell level and higher. As a hypothesis, it generates predictions that lend themselves to future clinical testing. The different effects of scotomas due to loss of photoreceptors are left for follow-up work.
Collapse
Affiliation(s)
- Eli Peli
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robert Goldstein
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jae-Hyun Jung
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Duan H, Min X, Zhu Y, Zhai G, Yang X, Le Callet P. Confusing Image Quality Assessment: Toward Better Augmented Reality Experience. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:7206-7221. [PMID: 36367913 DOI: 10.1109/tip.2022.3220404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the development of multimedia technology, Augmented Reality (AR) has become a promising next-generation mobile platform. The primary value of AR is to promote the fusion of digital contents and real-world environments, however, studies on how this fusion will influence the Quality of Experience (QoE) of these two components are lacking. To achieve better QoE of AR, whose two layers are influenced by each other, it is important to evaluate its perceptual quality first. In this paper, we consider AR technology as the superimposition of virtual scenes and real scenes, and introduce visual confusion as its basic theory. A more general problem is first proposed, which is evaluating the perceptual quality of superimposed images, i.e., confusing image quality assessment. A ConFusing Image Quality Assessment (CFIQA) database is established, which includes 600 reference images and 300 distorted images generated by mixing reference images in pairs. Then a subjective quality perception experiment is conducted towards attaining a better understanding of how humans perceive the confusing images. Based on the CFIQA database, several benchmark models and a specifically designed CFIQA model are proposed for solving this problem. Experimental results show that the proposed CFIQA model achieves state-of-the-art performance compared to other benchmark models. Moreover, an extended ARIQA study is further conducted based on the CFIQA study. We establish an ARIQA database to better simulate the real AR application scenarios, which contains 20 AR reference images, 20 background (BG) reference images, and 560 distorted images generated from AR and BG references, as well as the correspondingly collected subjective quality ratings. Three types of full-reference (FR) IQA benchmark variants are designed to study whether we should consider the visual confusion when designing corresponding IQA algorithms. An ARIQA metric is finally proposed for better evaluating the perceptual quality of AR images. Experimental results demonstrate the good generalization ability of the CFIQA model and the state-of-the-art performance of the ARIQA model. The databases, benchmark models, and proposed metrics are available at: https://github.com/DuanHuiyu/ARIQA.
Collapse
|
5
|
Hastings GD, Banks MS, Roorda A. Radial and Tangential Retinal Magnifications as Functions of Visual Field Angle Across Spherical, Oblate, and Prolate Retinal Profiles. Transl Vis Sci Technol 2022; 11:10. [PMID: 36121677 PMCID: PMC9503314 DOI: 10.1167/tvst.11.9.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To provide a tool for calculating radial and tangential retinal magnifications as functions of field angle and retinal shape and to articulate patterns of magnification across the retina for monocular and binocular combinations of prolate-, oblate-, and spherical-shaped retinas. Methods Formulae were derived to calculate radial and tangential retinal magnifications (mm/deg) from field angle (degrees), retinal asphericity (unitless conic constant), retinal vertex radius of curvature (mm), and nodal point position (mm). Monocular retinal magnifications were determined for eyes with prolate, spherical, and oblate retinas as functions of field angle. Bilateral differences in magnifications were examined for combinations of those eyes. Results Retinal shape substantially affects magnification profiles even for eyes with the same axial length. Greatest magnification changes across a retina and between eyes, as well as greatest increase in radial-tangential differences (distortion), occur with prolate retinas. Binocular magnification differences were smallest for oblate retinas. Nodal points anterior to the vertex center of curvature and oblate asphericity both cause field-dependent reductions in magnification relative to the fovea (barrel distortion), whereas nodal points posterior to vertex center of curvature and prolate asphericity cause the opposite (pincushion distortion). Retinal magnification differences due to eye shape are much greater than aniseikonia thresholds and chromatic differences in magnification. A spreadsheet tool implements the magnification calculations. Conclusions Local retinal magnifications as functions of field angle have substantial effects on objective applications (imaging retinal anatomy) and subjective experiences (aniseikonia) and quantify an ocular property that differs across eye shapes and refractive errors. Translational Relevance Methods are provided to customize the calculation of radial and tangential magnifications across the retina for individual eyes, which will bolster the multifactorial study of the effects of foveal and peripheral optics across eye shapes and refractive errors.
Collapse
Affiliation(s)
- Gareth D. Hastings
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Martin S. Banks
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Jung JH, Kurukuti NM, Peli E. Photographic Depiction of the Field of View with Spectacles-mounted Low Vision Aids. Optom Vis Sci 2021; 98:1210-1226. [PMID: 34629434 PMCID: PMC8560063 DOI: 10.1097/opx.0000000000001790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Photographic depiction helps to illustrate the primary and secondary field of view effects of low vision devices along with their utility to clinicians, patients, and caretakers. This technique may also be helpful for designers and researchers in improving the design and fitting of low vision devices. PURPOSE The field of view through spectacles-mounted low vision devices has typically been evaluated using perimetry. However, the perimetric field diagram is different from the retinal image and often fails to represent the important aspects of the field of view and visual parameters. We developed a photographic depiction method to record and veridically show the field of view effects of these devices. METHODS We used a 3D-printed holder to place spectacles-mounted devices at the same distance from the empirically determined reference point of the field of view in a camera lens (f = 16 mm) as they would be from an eye, when in use. The field of view effects of a bioptic telescope, a minifier (reverse telescope), and peripheral prisms were captured using a conventional camera, representing retinal images. The human eye pupil size (adjusting the F number: f/2.8 to f/8 and f/22 in the camera lens) and fitting parameters (pantoscopic tilt and back vertex distance) varied. RESULTS Real-world indoor and outdoor walking and driving scenarios were depicted as retinal images illustrating the field of view through low vision devices, distinguishing optical and obscuration scotomas, and demonstrating secondary effects (spatial distortions, viewpoint changes, diplopia, spurious reflection, and multiplexing effects) not illustrated by perimetric field diagrams. CONCLUSIONS Photographic depiction illustrates the primary and secondary field of view effects of the low vision devices. These images highlight the benefit and possible trade-offs of the low vision devices and may be beneficial in education and training.
Collapse
Affiliation(s)
- Jae-Hyun Jung
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Nish Mohith Kurukuti
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Eli Peli
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Agarwal R, Tripathi A. Current Modalities for Low Vision Rehabilitation. Cureus 2021; 13:e16561. [PMID: 34466307 PMCID: PMC8396411 DOI: 10.7759/cureus.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Visual rehabilitation is an effective method for increasing the quality of life among individuals with low vision or blindness due to untreatable causes. Low vision rehabilitation aims for patients to use their residual vision effectively and efficiently to enable them to live independent and productive lives. Low vision rehabilitation includes assessment of residual visual functions, prescription of rehabilitation aids, and training in the use of devices. A multidisciplinary approach and coordinated effort are necessary to take advantage of new scientific advances and achieve optimal results for the patient. This article aims to review the various aids and methods available for low vision rehabilitation and also discusses technology advances that can enhance the visual functioning of individuals who are visually impaired.
Collapse
Affiliation(s)
- Richa Agarwal
- Ophthalmology, All India Institute of Medical Sciences, Gorakhpur, IND
| | - Alka Tripathi
- Ophthalmology, All India Institute of Medical Sciences, Gorakhpur, IND
| |
Collapse
|
8
|
Biffl S, Gruber H, Gorka P. Mindestanforderungen an das Sehvermögen für das Lenken von Kraftfahrzeugen und Einfluss von Prismenfolien auf das Sehvermögen. SPEKTRUM DER AUGENHEILKUNDE 2021. [DOI: 10.1007/s00717-020-00479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Sayed AM, Shousha MA, Baharul Islam MD, Eleiwa TK, Kashem R, Abdel-Mottaleb M, Ozcan E, Tolba M, Cook JC, Parrish RK. Mobility improvement of patients with peripheral visual field losses using novel see-through digital spectacles. PLoS One 2020; 15:e0240509. [PMID: 33052969 PMCID: PMC7556490 DOI: 10.1371/journal.pone.0240509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To evaluate see-through Augmented Reality Digital spectacles (AR DSpecs) for improving the mobility of patients with peripheral visual field (VF) losses when tested on a walking track. DESIGN Prospective Case Series. PARTICIPANTS 21 patients with peripheral VF defects in both eyes, with the physical ability to walk without assistance. METHODS We developed the AR DSpecs as a wearable VF aid with an augmented reality platform. Image remapping algorithms produced personalized visual augmentation in real time based on the measured binocular VF with the AR DSpecs calibration mode. We tested the device on a walking track to determine if patients could more accurately identify peripheral objects. MAIN OUTCOME MEASURES We analyzed walking track scores (number of recognized/avoided objects) and eye tracking data (six gaze parameters) to measure changes in the kinematic and eye scanning behaviors while walking, and assessed a possible placebo effect by deactivating the AR DSpecs remapping algorithms in random trials. RESULTS Performance, judged by the object detection scores, improved with the AR DSpecs (P<0.001, Wilcoxon rank sum test) with an average improvement rate of 18.81%. Two gaze parameters improved with the activated algorithm (P<0.01, paired t-test), indicating a more directed gaze on the central path with less eye scanning. Determination of the binocular integrated VF with the DSpecs correlated with the integrated standard automated perimetry (R = 0.86, P<0.001), mean sensitivity difference 0.8 ± 2.25 dB (Bland-Altman). CONCLUSIONS AR DSpecs may improve walking maneuverability of patients with peripheral VF defects by enhancing detection of objects in a testing environment.
Collapse
Affiliation(s)
- Ahmed M. Sayed
- Biomedical Engineering Department, Helwan University, Helwan, Egypt
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
- Electrical Engineering and Computer Science, MSOE University, Milwaukee, WI, United States of America
- * E-mail: (MAS); (AS)
| | - Mohamed Abou Shousha
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
- Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States of America
- Biomedical Engineering Department, University of Miami, Miami, FL, United States of America
- * E-mail: (MAS); (AS)
| | - MD Baharul Islam
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
- Department of Computer Science, American University of Malta, BML, Malta
| | - Taher K. Eleiwa
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
- Faculty of Medicine, Department of Ophthalmology, Benha University, Benha, Egypt
| | - Rashed Kashem
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
| | - Mostafa Abdel-Mottaleb
- Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States of America
| | - Eyup Ozcan
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
- Net Eye Medical Center, Gaziantep, Turkey
| | - Mohamed Tolba
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
| | - Jane C. Cook
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
| | - Richard K. Parrish
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
| |
Collapse
|
10
|
Peli E. 2017 Charles F. Prentice Award Lecture: Peripheral Prisms for Visual Field Expansion: A Translational Journey. Optom Vis Sci 2020; 97:833-846. [PMID: 33055514 PMCID: PMC7606588 DOI: 10.1097/opx.0000000000001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
On the occasion of being awarded the Prentice Medal, I was asked to summarize my translational journey. Here I describe the process of becoming a low-vision rehabilitation clinician and researcher, frustrated by the unavailability of effective treatments for some conditions. This led to decades of working to understand patients' needs and the complexities and subtleties of their visual systems and conditions. It was followed by many iterations of developing vision aids and the techniques needed to objectively evaluate their benefit. I specifically address one path: the invention and development of peripheral prisms to expand the visual fields of patients with homonymous hemianopia, leading to our latest multiperiscopic prism (mirror-based design) with its clear 45° field-of-view image shift.
Collapse
Affiliation(s)
- Eli Peli
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Htike HM, Margrain TH, Lai YK, Eslambolchilar P. Ability of Head-Mounted Display Technology to Improve Mobility in People With Low Vision: A Systematic Review. Transl Vis Sci Technol 2020; 9:26. [PMID: 33024619 PMCID: PMC7521174 DOI: 10.1167/tvst.9.10.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose The purpose of this study was to undertake a systematic literature review on how vision enhancements, implemented using head-mounted displays (HMDs), can improve mobility, orientation, and associated aspects of visual function in people with low vision. Methods The databases Medline, Chinl, Scopus, and Web of Science were searched for potentially relevant studies. Publications from all years until November 2018 were identified based on predefined inclusion and exclusion criteria. The data were tabulated and synthesized to produce a systematic review. Results The search identified 28 relevant papers describing the performance of vision enhancement techniques on mobility and associated visual tasks. Simplifying visual scenes improved obstacle detection and object recognition but decreased walking speed. Minification techniques increased the size of the visual field by 3 to 5 times and improved visual search performance. However, the impact of minification on mobility has not been studied extensively. Clinical trials with commercially available devices recorded poor results relative to conventional aids. Conclusions The effects of current vision enhancements using HMDs are mixed. They appear to reduce mobility efficiency but improved obstacle detection and object recognition. The review highlights the lack of controlled studies with robust study designs. To support the evidence base, well-designed trials with larger sample sizes that represent different types of impairments and real-life scenarios are required. Future work should focus on identifying the needs of people with different types of vision impairment and providing targeted enhancements. Translational Relevance This literature review examines the evidence regarding the ability of HMD technology to improve mobility in people with sight loss.
Collapse
Affiliation(s)
- Hein Min Htike
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Tom H Margrain
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Yu-Kun Lai
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | | |
Collapse
|
12
|
Peli E, Vargas-Martin F, Kurukuti NM, Jung JH. Multi-periscopic prism device for field expansion. BIOMEDICAL OPTICS EXPRESS 2020; 11:4872-4889. [PMID: 33014587 PMCID: PMC7510881 DOI: 10.1364/boe.399028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 05/30/2023]
Abstract
Patients with visual field loss frequently collide with other pedestrians, with the highest risk being from pedestrians at a bearing angle of 45°. Current prismatic field expansion devices (≈30°) cannot cover pedestrians posing the highest risk and are limited by poor image quality and restricted eye scanning range (<5°). A new field expansion device: multi-periscopic prism (MPP); comprising a cascade of half-penta prisms provides wider shifting power (45°) with dramatically better image quality and wider eye scanning range (15°) is presented. Spectacles-mounted MPPs were implemented using 3D printing. The efficacy of the MPP is demonstrated using perimetry, photographic depiction, and analyses of the collision risk covered by the devices.
Collapse
Affiliation(s)
- Eli Peli
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA
| | | | - Nish Mohith Kurukuti
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA
| | - Jae-Hyun Jung
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA
| |
Collapse
|
13
|
Sayed AM, Kashem R, Abdel-Mottaleb M, Roongpoovapatr V, Eleiwa TK, Abdel-Mottaleb M, Parrish RK, Abou Shousha M. Toward Improving the Mobility of Patients with Peripheral Visual Field Defects with Novel Digital Spectacles. Am J Ophthalmol 2020; 210:136-145. [PMID: 31606442 DOI: 10.1016/j.ajo.2019.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE To assess the efficacy of novel Digital spectacles (DSpecs) to improve mobility of patients with peripheral visual field (VF) loss. DESIGN Prospective case series. METHODS Binocular VF defects were quantified with the DSpecs testing strategy. An algorithm was implemented that generated personalized visual augmentation profiles based on the measured VF. These profiles were achieved by relocating and resizing video signals to fit within the remaining VF in real time. Twenty patients with known binocular VF defects were tested using static test images, followed by dynamic walking simulations to determine if they could identify objects and avoid obstacles in an environment mimicking a real-life situation. The effect of the DSpecs were assessed for visual/hand coordination with object-grasping tests. Patients performed these tests with and without the DSpecs correction profile. RESULTS The diagnostic binocular VF testing with the DSpecs was comparable to the integrated monocular standard automated perimetry based on point-by-point assessment with a mismatch error of 7.0%. Eighteen of 20 patients (90%) could identify peripheral objects in test images with the DSpecs that they could not previously. Visual/hand coordination was successful for 17 patients (85%) from the first trial. The object-grasping performance improved to 100% by the third trial. Patient performance, judged by finding and identifying objects in the periphery in a simulated walking environment, was significantly better with the DSpecs (P = 0.02, Wilcoxon rank sum test). CONCLUSIONS DSpecs may improve mobility by facilitating the ability of patients to better identify moving peripheral hazardous objects.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA; Biomedical Engineering Department, Helwan University, Helwan, Egypt
| | - Rashed Kashem
- Department of Electrical and Computer Engineering, University of Miami, Miami, Florida, USA
| | - Mostafa Abdel-Mottaleb
- Department of Electrical and Computer Engineering, University of Miami, Miami, Florida, USA
| | | | - Taher K Eleiwa
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA; Department of Ophthalmology, Faculty of Medicine, Benha University, Egypt
| | - Mohamed Abdel-Mottaleb
- Department of Electrical and Computer Engineering, University of Miami, Miami, Florida, USA
| | - Richard K Parrish
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Mohamed Abou Shousha
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA; Department of Electrical and Computer Engineering, University of Miami, Miami, Florida, USA; Biomedical Engineering Department, University of Miami, Miami, Florida, USA.
| |
Collapse
|
14
|
Choi HJ, Peli E, Park M, Jung JH. Design of 45° periscopic visual field expansion device for peripheral field loss. OPTICS COMMUNICATIONS 2020; 454:10.1016/j.optcom.2019.124364. [PMID: 32082001 PMCID: PMC7032564 DOI: 10.1016/j.optcom.2019.124364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patients with visual field loss have difficulty in mobility due to collision with pedestrians/obstacles from the blind side. In order to retrieve the lost visual field, prisms which deflect the field from the blind to the seeing side, have been widely used. However, the deflection power of current clinical Fresnel prisms is limited to ~30° and only provides a 5° eye scanning range to the blind side. This is not sufficient to avoid collision and results in increasing demands for a device with a higher power. In this paper, we propose a novel design and optimization of a higher power prism-like device (cascaded structure of mirror pairs filled with high refractive index) and verify enhanced expansion of up to 45° in optical ray tracing and photorealistic simulations.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea
| | - Eli Peli
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Minyoung Park
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea
| | - Jae-Hyun Jung
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Peripheral Prisms Improve Obstacle Detection during Simulated Walking for Patients with Left Hemispatial Neglect and Hemianopia. Optom Vis Sci 2019; 95:795-804. [PMID: 30169355 DOI: 10.1097/opx.0000000000001280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SIGNIFICANCE The first report on the use of peripheral prisms (p-prisms) for patients with left neglect and homonymous visual field defects (HVFDs). PURPOSE The purpose of this study was to investigate if patients with left hemispatial neglect and HVFDs benefit from p-prisms to expand the visual field and improve obstacle detection. METHODS Patients (24 with HVFDs, 10 of whom had left neglect) viewed an animated, virtual, shopping mall corridor and reported if they would have collided with a human obstacle that appeared at various offsets up to 13.5° from their simulated walking path. There were 40 obstacle presentations on each side, with and without p-prisms. No training with p-prisms was provided, and gaze was fixed at the center of expansion. RESULTS Detection on the side of the HVFD improved significantly with p-prisms in both groups, from 26 to 92% in the left-neglect group and 43 to 98% in the non-neglect group (both P < .001). There was a tendency for greater improvement in the neglect patients with p-prisms. For collision judgments, both groups exhibited a large increase in perceived collisions on the side of the HVFD with the prisms (P < .001), with no difference between the groups (P = .93). Increased perceived collisions represent a wider perceived safety margin on the side of the HVFD. CONCLUSIONS Within the controlled conditions of this simulated, collision judgment task, patients with left neglect responded well to initial application of p-prisms exhibiting improved detection and wider safety margins on the side of the HVFD that did not differ from non-neglect patients. Further study of p-prisms for neglect patients in free-gaze conditions after extended wear and in real-world mobility tasks is clearly warranted.
Collapse
|
16
|
Altınbay D, İdil ŞA. Current Approaches to Low Vision (Re)Habilitation. Turk J Ophthalmol 2019; 49:154-163. [PMID: 31245978 PMCID: PMC6624462 DOI: 10.4274/tjo.galenos.2018.53325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022] Open
Abstract
With increased life expectancy at birth and especially the rising incidence of age-related macular degeneration, low vision (re)habilitation is becoming more important today. Important factors to consider when presenting rehabilitation and treatment options to patients presenting to low vision centers include the diagnosis of the underlying disease, the patient’s age, their existing visual functions (especially distance and near visual acuity), whether visual loss is central or peripheral, whether their disease is progressive or not, the patient’s education level, and their expectations from us. Low vision patients must be guided to the right centers at the appropriate age, with appropriate indications, and with realistic expectations, and the rehabilitation process must be carried out as a multidisciplinary collaboration.
Collapse
Affiliation(s)
- Deniz Altınbay
- Private Niv Eye Center, Ophthalmology Clinic, Adana, Turkey
- Ankara University, Artificial Vision and Low Vision Rehabilitation, Master Student with Thesis in Vision, Ankara, Turkey
| | - Şefay Aysun İdil
- Ankara University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
- Center of Vision Research and Low Vision Rehabilitation, Ankara, Turkey
| |
Collapse
|
17
|
García-Pérez MA. Psychophysical Tests Do Not Identify Ocular Dominance Consistently. Iperception 2019; 10:2041669519841397. [PMID: 31069044 PMCID: PMC6492369 DOI: 10.1177/2041669519841397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Classical sighting or sensory tests are used in clinical practice to identify the dominant eye. Several psychophysical tests were recently proposed to quantify the magnitude of dominance but whether their results agree was never investigated. We addressed this question for the two most common psychophysical tests: The perceived-phase test, which measures the cyclopean appearance of dichoptically presented sinusoids of different phase, and the coherence-threshold test, which measures interocular differences in motion perception when signal and noise stimuli are presented dichoptically. We also checked for agreement with three classical tests (Worth 4-dot, Randot suppression, and Bagolini lenses). Psychophysical tests were administered in their conventional form and also using more dependable psychophysical methods. The results showed weak correlations between psychophysical measures of strength of dominance with inconsistent identification of the dominant eye across tests: Agreement on left-eye dominance, right-eye dominance, or nondominance by both tests occurred only for 11 of 40 observers (27.5%); the remaining 29 observers were classified differently by each test, including 14 cases (35%) of opposite classification (left-eye dominance by one test and right-eye dominance by the other). Classical tests also yielded conflicting results that did not agree well with classification based on psychophysical tests. The results are discussed in the context of determination of ocular dominance for clinical decisions.
Collapse
Affiliation(s)
- Miguel A. García-Pérez
- Departamento de Metodología, Facultad de Psicología,
Universidad Complutense, Madrid, Spain
| |
Collapse
|
18
|
Qiu C, Jung JH, Tuccar-Burak M, Spano L, Goldstein R, Peli E. Measuring Pedestrian Collision Detection With Peripheral Field Loss and the Impact of Peripheral Prisms. Transl Vis Sci Technol 2018; 7:1. [PMID: 30197833 PMCID: PMC6126965 DOI: 10.1167/tvst.7.5.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/26/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose Peripheral field loss (PFL) due to retinitis pigmentosa, choroideremia, or glaucoma often results in a highly constricted residual central field, which makes it difficult for patients to avoid collision with approaching pedestrians. We developed a virtual environment to evaluate the ability of patients to detect pedestrians and judge potential collisions. We validated the system with both PFL patients and normally sighted subjects with simulated PFL. We also tested whether properly placed high-power prisms may improve pedestrian detection. Methods A virtual park-like open space was rendered using a driving simulator (configured for walking speeds), and pedestrians in testing scenarios appeared within and outside the residual central field. Nine normally sighted subjects and eight PFL patients performed the pedestrian detection and collision judgment tasks. The performance of the subjects with simulated PFL was further evaluated with field of view expanding prisms. Results The virtual system for testing pedestrian detection and collision judgment was validated. The performance of PFL patients and normally sighted subjects with simulated PFL were similar. The prisms for simulated PFL improved detection rates, reduced detection response times, and supported reasonable collision judgments in the prism-expanded field; detections and collision judgments in the residual central field were not influenced negatively by the prisms. Conclusions The scenarios in a virtual environment are suitable for evaluating PFL and the impact of field of view expanding devices. Translational Relevance This study validated an objective means to evaluate field expansion devices in reproducible near-real-life settings.
Collapse
Affiliation(s)
- Cheng Qiu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jae-Hyun Jung
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Merve Tuccar-Burak
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lauren Spano
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Robert Goldstein
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eli Peli
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Abstract
SIGNIFICANCE Acquired monocular vision (AMV) is a common visual field loss. Patients report mobility difficulties in walking due to collisions with objects or other pedestrians on the blind side. PURPOSE The visual field of people with AMV extends more than 90° temporally on the side of the seeing eye but is restricted to approximately 55° nasally. We developed a novel field expansion device using a multiplexing prism (MxP) that superimposes the see-through and shifted views for true field expansion without apical scotoma. We present various designs of the device that enable customized fitting and improved cosmetics. METHODS A partial MxP segment is attached (base-in) near the nose bridge. To avoid total internal reflection due to the high angle of incidence at nasal field end (55°), we fit the MxP with serrations facing the eye and tilt the prism base toward the nose. We calculated the width of the MxP (the apex location) needed to prevent apical scotoma and monocular diplopia. We also consider the effect of spectacle prescriptions on these settings. The results are verified perimetrically. RESULTS We documented the effectivity of various prototype glasses designs with perimetric measurements. With the prototypes, all patients with AMV had field-of-view expansions up to 90° nasally without any loss of seeing field. CONCLUSIONS The novel and properly mounted MxP in glasses has the potential for meaningful field-of-view expansion up to the size of normal binocular vision in cosmetically acceptable form.
Collapse
Affiliation(s)
| | - Eli Peli
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts *
| |
Collapse
|
20
|
Abstract
PURPOSE Prisms used for field expansion are limited by the optical scotoma at a prism apex (apical scotoma). For a patient with two functioning eyes, fitting prisms unilaterally allows the other eye to compensate for the apical scotoma. A monocular patient's field loss cannot be expanded with a conventional or Fresnel prism because of the apical scotoma. A newly invented optical device, the multiplexing prism (MxP), was developed to overcome the apical scotoma limitation in monocular field expansion. METHODS A Fresnel-prism-like device with alternating prism and flat elements superimposes shifted and see-through views, thus creating the (monocular) visual confusion required for field expansion and eliminating the apical scotoma. Several implementations are demonstrated and preliminarily evaluated for different monocular conditions with visual field loss. The field expansion of the MxP is compared with the effect of conventional prisms using calculated and measured perimetry. RESULTS Field expansion without apical scotomas is shown to be effective for monocular patients with hemianopia or constricted peripheral field. The MxPs are shown to increase the nasal field for a patient with only one eye and for patients with bitemporal hemianopia. The MxPs placed at the far temporal field are shown to expand the normal visual field. The ability to control the contrast ratio between the two images is verified. CONCLUSIONS A novel optical device is demonstrated to have the potential for field expansion technology in a variety of conditions. The devices may be inexpensive and can be constructed in a cosmetically acceptable format.
Collapse
|
21
|
Head-Mounted Display Technology for Low-Vision Rehabilitation and Vision Enhancement. Am J Ophthalmol 2017; 176:26-32. [PMID: 28048975 DOI: 10.1016/j.ajo.2016.12.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/21/2022]
Abstract
PURPOSE To describe the various types of head-mounted display technology, their optical and human-factors considerations, and their potential for use in low-vision rehabilitation and vision enhancement. DESIGN Expert perspective. METHODS An overview of head-mounted display technology by an interdisciplinary team of experts drawing on key literature in the field. RESULTS Head-mounted display technologies can be classified based on their display type and optical design. See-through displays such as retinal projection devices have the greatest potential for use as low-vision aids. Devices vary by their relationship to the user's eyes, field of view, illumination, resolution, color, stereopsis, effect on head motion, and user interface. These optical and human-factors considerations are important when selecting head-mounted displays for specific applications and patient groups. CONCLUSIONS Head-mounted display technologies may offer advantages over conventional low-vision aids. Future research should compare head-mounted displays with commonly prescribed low-vision aids to compare their effectiveness in addressing the impairments and rehabilitation goals of diverse patient populations.
Collapse
|
22
|
Peli E, Apfelbaum H, Berson EL, Goldstein RB. The risk of pedestrian collisions with peripheral visual field loss. J Vis 2016; 16:5. [PMID: 27919101 PMCID: PMC5142795 DOI: 10.1167/16.15.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/28/2016] [Indexed: 11/24/2022] Open
Abstract
Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.
Collapse
Affiliation(s)
- Eli Peli
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; ; http://serinet.meei.harvard.edu/faculty/peli/
| | - Henry Apfelbaum
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA;
| | - Eliot L Berson
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA;
| | - Robert B Goldstein
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA;
| |
Collapse
|