1
|
Karuntu JS, Pfau M, Jolly JK, Boon CJF. Test-retest variability of mesopic microperimetry-associated parameters in patients with retinitis pigmentosa: REPEAT Study Report No. 2. Acta Ophthalmol 2024. [PMID: 39581886 DOI: 10.1111/aos.16780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Understanding test-retest variability (TRV) of mesopic microperimetry is critical for defining meaningful treatment effects in retinitis pigmentosa (RP) trials. This study uniquely evaluates intra- and intervisit TRV and coefficients of repeatability (CoRs) for microperimetry parameters in RP patients with varying best-corrected visual acuity (BCVA) levels. METHODS In this single-centre prospective cohort study, RP patients were assessed on two visits, 14.0 days apart. Patients were grouped by BCVA: low (≤20/50 Snellen; ≥0.4 logMAR) or moderate (>20/50 Snellen; <0.4 logMAR). Using Bland-Altman analyses, the CoRs for intra- and intervisit variability were determined for pointwise (dB), mean (dB), and volume sensitivity (dB*deg2) on mesopic microperimetry. RESULTS Intravisit CoRs for mean, volume, and pointwise sensitivity were 1.7 dB, 353.2 dB*deg2, and 8.6 dB, respectively, in the low-BCVA group (n = 32), and 0.9 dB, 254.5 dB*deg2, and 7.3 dB in the moderate-BCVA group (n = 15). Intervisit CoRs for mean, volume, and pointwise sensitivity were 2.4 dB, 355.2 dB*deg2, and 10.2 dB in the low-BCVA group (n = 31). The moderate-BCVA group (n = 16) showed smaller CoRs of 1.6 dB, 386.8 dB*deg2, and 7.7 dB for mean, volume, and pointwise sensitivity. BCVA and mean sensitivity, but not fixation stability, are predictors of TRV for volume sensitivity. CONCLUSIONS Due to significant TRV, pointwise sensitivity is an unreliable endpoint for RP patients, irrespective of BCVA. Mean sensitivity is suitable as an endpoint when BCVA is relatively preserved. Volume sensitivity provides additional spatial information, and shows promise as a clinical endpoint for assessing macular sensitivity changes on mesopic microperimetry in patients with RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maximilian Pfau
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Jasleen K Jolly
- Department of Optometry and Vision Science, University of Melbourne, Melbourne, Victoria, Australia
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Xu Y, Liu X, Wu N, Long Y, Ren J, Wang Y, Su X, Liu Z, Fujinami-Yokokawa Y, Fujinami K, Chen F, Meng X, Liu Y. Investigating Microperimetric Features in Bietti Crystalline Dystrophy Patients: A Cross-Sectional Longitudinal Study in a Large Cohort. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 39540859 PMCID: PMC11572751 DOI: 10.1167/iovs.65.13.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose To assess the clinical and genetic characteristics of patients with Bietti crystalline dystrophy (BCD) with a focus on potential of microperimetry in monitoring macular function. Methods A total of 208 genetically-confirmed BCD patients were enrolled in this retrospective study. The patients were categorized into subgroups based on their fundus characteristics (fovea sparing and fovea involved), optical coherence tomography (OCT) findings (presence/absence of retinal pigment epithelium [RPE] or ellipsoid zone [EZ] line at the fovea/parafovea), and genetic profiles (Mis/Mis, Tru/Mis, Tru/Tru). Fixation patterns were analyzed, and macular sensitivity (MS) parameters were compared among different groups. Longitudinal analysis was performed to calculate the annual changes in MS parameters. Correlation between genotype and phenotype were further investigated by analyzing cumulative incidence of vision impairment among different genotypic groups. Results Patients with well-preserved RPE or EZ at the foveal/parafoveal region exhibited higher MS. Notably, there was a decline in sensitivity parameters, with a decrease of -2.193 dB/year (95% confidence interval [CI] -4.292 to -0.095, P = 0.041) at the fovea and -1.353 dB/year (95% CI -2.047 to -0.659, P < 0.001) in average sensitivity. An age-adjusted comparison of sensitivity among genotypic groups and cumulative incidence analyses showed no association between genotypic groups and vision loss. Conclusions Microperimetry proves to be one of a credible tool for detecting macular functional changes in BCD patients. BCD patients with different genotypes may have similar disease progression.
Collapse
Affiliation(s)
- Yufei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Nan Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yanling Long
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiayun Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yu Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xinyi Su
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, United Kingdom
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, United Kingdom
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Moorfields Eye Hospital, United Kingdom
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Fang Chen
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
3
|
Charng J, Thompson JA, Heath Jeffery RC, Kalantary A, Lamey TM, McLaren TL, Chen FK. Censoring the Floor Effect in Long-Term Stargardt Disease Microperimetry Data Produces a Faster Rate of Decline. OPHTHALMOLOGY SCIENCE 2024; 4:100581. [PMID: 39280350 PMCID: PMC11401193 DOI: 10.1016/j.xops.2024.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024]
Abstract
Purpose To evaluate progression rate estimation in long-term Stargardt disease microperimetry data by accounting for floor effect. Design Cohort study. Subjects Thirty-seven subjects (23 females, 14 males) with biallelic ABCA4 pathogenic or likely pathogenic variants and more than >2 years of longitudinal microperimetry data. Methods Cross-sectional and longitudinal microperimetry data (Grid A: 18° diameter, Grid B: 6° diameter; Macular Integrity Assessment microperimeter, dynamic range 0-36 decibels [dB]) was extracted from patients with biallelic mutation in the adenosine triphosphate-binding cassette subfamily A member 4 (ABCA4) gene. For each eye, mean sensitivity (MS) and responding point sensitivity (RPS) rates were extracted. Floor censored sensitivity (FCS) progression rate, which accounts for the floor effect at each locus by terminating calculation when scotoma was observed in 2 consecutive visits, was also calculated. In a subset of eyes with ≥1 scotomatous locus at baseline (Grid A), sensitivity progression of loci around the scotoma (edge of scotoma sensitivity [ESS]) was examined against other progression parameters. Paired t test compared progression rate parameters across the same eyes. Main Outcome Measures Microperimetry grid parameters at baseline and progression rates. Results A total of 37 subjects with biallelic ABCA4 mutations and >2 years of longitudinal microperimetry data were included in the study. In Grid A, at baseline, the average MS and RPS were 16.5 ± 7.9 and 19.1 ± 5.7 dB, respectively. Similar MS (18.4 ± 7.6 dB) and RPS (20.0 ± 5.5 dB) values were found at baseline for Grid B. In Grid A, overall, MS, RPS, and FCS progression rates were -0.57 ± 1.05, -0.74 ± 1.24, and -1.26 ± 1.65 (all dB/year), respectively. Floor censored sensitivity progression rate was significantly greater than the MS or RPS progression rates. Similar findings were observed in Grid B (MS -1.22 ± 1.42, RPS -1.44 ± 1.44, FCS -2.16 ± 2.24, all dB/year), with paired t test again demonstrated that FCS had a significantly faster rate of decline than MS or RPS. In patients with progression data in both grids, MS, RPS, and FCS progression rates were significantly faster in the smaller Grid B. In 24 eyes with scotoma at baseline, fastest rate of decline was ESS combined with FCS compared with other progression parameters. Conclusions Incorporation of FCS can reduce confound of floor effect in perimetry analysis and can in turn detect a faster rate of decline. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jason Charng
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
- Discipline of Optometry, School of Allied Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Rachael C Heath Jeffery
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Amy Kalantary
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Terri L McLaren
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Perth, Western Australia, Australia
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
5
|
Mizobuchi K, Hayashi T, Tanaka K, Kuniyoshi K, Murakami Y, Nakamura N, Torii K, Mizota A, Sakai D, Maeda A, Kominami T, Ueno S, Kusaka S, Nishiguchi KM, Ikeda Y, Kondo M, Tsunoda K, Hotta Y, Nakano T. Genetic and Clinical Features of ABCA4-Associated Retinopathy in a Japanese Nationwide Cohort. Am J Ophthalmol 2024; 264:36-43. [PMID: 38499139 DOI: 10.1016/j.ajo.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE To clarify the genetic and clinical features of Japanese patients with ABCA4-associated retinopathy. DESIGN Retrospective, multicenter cohort study. METHODS Patients with retinal degeneration and biallelic ABCA4 variants were recruited from 13 different hospitals. Whole exome sequencing analysis was used for genetic testing. Comprehensive ophthalmic examinations were performed on matched patients. The primary outcome measure was identifying multimodal retinal imaging findings associated with disease progression. RESULTS This study included 63 patients: 19 with missense/missense, 23 with missense/truncation, and 21 with truncation/truncation genotypes. In total, 62 variants were identified, including 29 novel variants. Six patients had a mild phenotype characterized by foveal-sparing or preserved foveal structure, including 4 with missense/missense and 2 with missense/truncation genotypes. The p.Arg212His variant was the most frequent in patients with mild phenotypes (4/12 alleles). Clinical findings showed a disease duration-dependent worsening of the phenotypic stage. Patients with the truncation/truncation genotype exhibited rapid retinal degeneration within a few years and definite fundus autofluorescence imaging patterns, including hyper autofluorescence at the macula and few or no flecks. CONCLUSIONS Our results indicate that missense/missense or missense/truncation genotypes, including the p.Arg212His variant, are associated with a relatively mild phenotype. In contrast, the truncation/truncation genotype causes rapid and severe retinal degeneration in Japanese patients with ABCA4-associated retinopathy. These data are vital in predicting patient prognosis, guiding genetic counseling, and stratifying patients for future clinical trials.
Collapse
Affiliation(s)
- Kei Mizobuchi
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Katsushika Medical Center (T.H.), The Jikei University School of Medicine, Tokyo, Japan.
| | - Koji Tanaka
- Division of Ophthalmology, Department of Visual Sciences (K.T.), Nihon University School of Medicine, Nihon University Hospital, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology (K.K., S.K.), Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yusuke Murakami
- Department of Ophthalmology (Y.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Natsuko Nakamura
- Department of Ophthalmology (N.N.), The University of Tokyo, Tokyo, Japan
| | - Kaoruko Torii
- Department of Ophthalmology (K.T., Y.H.), Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Atsushi Mizota
- Department of Ophthalmology (A.M.), Teikyo University, Tokyo, Japan
| | - Daiki Sakai
- Department of Ophthalmology (D.S., A.M.), Kobe City Eye Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology (D.S., A.M.), Kobe City Eye Hospital, Kobe, Japan
| | - Taro Kominami
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shinji Ueno
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan; Department of Ophthalmology (S.U.), Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Shunji Kusaka
- Department of Ophthalmology (K.K., S.K.), Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology (Y.I.), Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mineo Kondo
- Department of Ophthalmology (M.K.), Mie University Graduate School of Medicine, Mie, Japan
| | - Kazushige Tsunoda
- Division of Vision Research (K.T.), National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology (K.T., Y.H.), Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tadashi Nakano
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Georgiou M, Robson AG, Fujinami K, de Guimarães TAC, Fujinami-Yokokawa Y, Daich Varela M, Pontikos N, Kalitzeos A, Mahroo OA, Webster AR, Michaelides M. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes. Prog Retin Eye Res 2024; 100:101244. [PMID: 38278208 DOI: 10.1016/j.preteyeres.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.
Collapse
Affiliation(s)
- Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Thales A C de Guimarães
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Angelos Kalitzeos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Section of Ophthalmology, King s College London, St Thomas Hospital Campus, London, United Kingdom; Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, PA, USA.
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
7
|
Fujinami K, Waheed N, Laich Y, Yang P, Fujinami-Yokokawa Y, Higgins JJ, Lu JT, Curtiss D, Clary C, Michaelides M. Stargardt macular dystrophy and therapeutic approaches. Br J Ophthalmol 2024; 108:495-505. [PMID: 37940365 PMCID: PMC10958310 DOI: 10.1136/bjo-2022-323071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Stargardt macular dystrophy (Stargardt disease; STGD1; OMIM 248200) is the most prevalent inherited macular dystrophy. STGD1 is an autosomal recessive disorder caused by multiple pathogenic sequence variants in the large ABCA4 gene (OMIM 601691). Major advances in understanding both the clinical and molecular features, as well as the underlying pathophysiology, have culminated in many completed, ongoing and planned human clinical trials of novel therapies.The aims of this concise review are to describe (1) the detailed phenotypic and genotypic characteristics of the disease, multimodal imaging findings, natural history of the disease, and pathogenesis, (2) the multiple avenues of research and therapeutic intervention, including pharmacological, cellular therapies and diverse types of genetic therapies that have either been investigated or are under investigation and (3) the exciting novel therapeutic approaches on the translational horizon that aim to treat STGD1 by replacing the entire 6.8 kb ABCA4 open reading frame.
Collapse
Affiliation(s)
- Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nadia Waheed
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yannik Laich
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Eye Center, Medical Center, University of Freiburg Faculty of Medicine, Freiburg, Germany
| | - Paul Yang
- Oregon Health and Science University Casey Eye Institute, Portland, Oregon, USA
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
- Department of Health Policy and Management, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | - Jonathan T Lu
- SalioGen Therapeutics Inc, Lexington, Massachusetts, USA
| | - Darin Curtiss
- Applied Genetic Technologies Corporation, Alachua, Florida, USA
| | - Cathryn Clary
- SalioGen Therapeutics Inc, Lexington, Massachusetts, USA
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Großpötzl M, Riedl R, Schließleder G, Hu ZJ, Michaelides M, Sadda S, Birch D, Charbel Issa P, Wedrich A, Seidel G, Scholl HPN, Strauss RW. Progression of PROM1-Associated Retinal Degeneration as Determined by Spectral-Domain Optical Coherence Tomography Over a 24-Month Period. Am J Ophthalmol 2024; 259:109-116. [PMID: 37979600 DOI: 10.1016/j.ajo.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE To evaluate the progression of atrophy as determined by spectral-domain optical coherence tomography (SD-OCT) in patients with molecularly confirmed PROM1-associated retinal degeneration (RD) over a 24-month period. DESIGN International, multicenter, prospective case series. METHODS A total of 13 eyes (13 patients) affected with PROM1-associated RD were enrolled at 5 sites and SD-OCT images were obtained at baseline and after 24 months. Loss of mean thickness (MT) and intact area were estimated after semi-automated segmentation for the following individual retinal layers in the central subfield (CS), inner ring, and outer ring of the ETDRS grid: retinal pigment epithelium (RPE), outer segments (OS), inner segments (IS), outer nuclear layer (ONL), inner retina (IR), and total retina (TR). RESULTS Statistically significant losses of thickness of RPE and TR were detected in the CS and inner ring and of ONL and IS in the outer ring (all P < .05); a statistically significant decrease in the intact area of RPE and IS was observed in the inner ring, and of ONL in the outer ring (all P < .05); the change in MT and the intact area of the other layers showed a trend of decline over an observational period of 24 months. CONCLUSIONS Significant thickness losses could be detected in outer retinal layers by SD-OCT over a 24-month period in patients with PROM1-associated retinal degeneration. Loss of thickness and/or intact area of such layers may serve as potential endpoints for clinical trials that aim to slow down the disease progression of PROM1-associated retinal degeneration.
Collapse
Affiliation(s)
- Manuel Großpötzl
- Department of Ophthalmology (M.G., G.S., A.W., G.S., R.W.S), Medical University Graz, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation (R.R.), Medical University Graz, Graz, Austria
| | - Gernot Schließleder
- Department of Ophthalmology (M.G., G.S., A.W., G.S., R.W.S), Medical University Graz, Graz, Austria
| | - Zhihong Jewel Hu
- Doheny Eye Institute (Z.J.H., S.V.S.), David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Michel Michaelides
- Moorfields Eye Hospital (M.M., R.W.S.), NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology (M.M., R.W.S.), University College London, London, United Kingdom
| | - SriniVas Sadda
- Doheny Eye Institute (Z.J.H., S.V.S.), David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - David Birch
- Retina Foundation of the Southwest (D.B.), Dallas, Texas, USA
| | - Peter Charbel Issa
- Department of Ophthalmology (P.C.I.), University of Bonn, Bonn, Germany; Oxford Eye Hospital (P.C.I.), Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology (P.C.I.), Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Andreas Wedrich
- Department of Ophthalmology (M.G., G.S., A.W., G.S., R.W.S), Medical University Graz, Graz, Austria
| | - Gerald Seidel
- Department of Ophthalmology (M.G., G.S., A.W., G.S., R.W.S), Medical University Graz, Graz, Austria
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (H.P.N.S.), Basel, Switzerland; Department of Ophthalmology (R.W.S.), University of Basel, Basel, Switzerland
| | - Rupert W Strauss
- Department of Ophthalmology (M.G., G.S., A.W., G.S., R.W.S), Medical University Graz, Graz, Austria; Moorfields Eye Hospital (M.M., R.W.S.), NHS Foundation Trust, London, United Kingdom; UCL Institute of Ophthalmology (M.M., R.W.S.), University College London, London, United Kingdom; Institute of Molecular and Clinical Ophthalmology Basel (H.P.N.S.), Basel, Switzerland; Wilmer Eye Institute (R.W.S.), Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Daich Varela M, Laich Y, Hashem SA, Mahroo OA, Webster AR, Michaelides M. Prognostication in Stargardt Disease Using Fundus Autofluorescence: Improving Patient Care. Ophthalmology 2023; 130:1182-1190. [PMID: 37331482 PMCID: PMC11108789 DOI: 10.1016/j.ophtha.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
PURPOSE To explore fundus autofluorescence (FAF) imaging as an alternative to electroretinography as a noninvasive, quick, and readily interpretable method to predict disease progression in Stargardt disease (STGD). DESIGN Retrospective case series of patients who attended Moorfields Eye Hospital (London, United Kingdom). PARTICIPANTS Patients with STGD who met the following criteria were included: (1) biallelic disease-causing variants in ABCA4, (2) electroretinography testing performed in house with an unequivocal electroretinography group classification, and (3) ultrawidefield (UWF) FAF imaging performed up to 2 years before or after the electroretinography. METHODS Patients were divided into 3 electroretinography groups based on retinal function and 3 FAF groups according to the extent of hypoautofluorescence and retinal background appearance. Fundus autofluorescence images of 30° and 55° were reviewed subsequently. MAIN OUTCOME MEASURES Electroretinography and FAF concordance and its association with baseline visual acuity (VA) and genetics. RESULTS Two hundred thirty-four patients were included in the cohort. One hundred seventy patients (73%) were in electroretinography and FAF groups of the same severity, 33 (14%) were in a milder FAF than electroretinography group, and 31 (13%) were in a more severe FAF than electroretinography group. Children < 10 years of age (n = 23) showed the lowest electroretinography and FAF concordance at 57% (9 of the 10 with discordant electroretinography and FAF showed milder FAF than electroretinography), and adults with adult onset showed the highest (80%). In 97% and 98% of patients, 30° and 55° FAF imaging, respectively, matched with the group defined by UWF FAF. CONCLUSIONS We demonstrated that FAF imaging is an effective method to determine the extent of retinal involvement and thereby inform prognostication by comparing FAF with the current gold standard of electroretinography. In 80% of patients in our large molecularly proven cohort, we were able to predict if the disease was confined to the macula or also affected the peripheral retina. Children assessed at a young age, with at least 1 null variant, early disease onset, poor initial VA, or a combination thereof may have wider retinal involvement than predicted by FAF alone, may progress to a more severe FAF phenotype over time, or both. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Yannik Laich
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shaima Awadh Hashem
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Ku CA, Igelman AD, Huang SJ, Vasconcelos H, da Palma MM, Bailey ST, Lauer AK, Weleber RG, Yang P, Pennesi ME. Improved Rod Sensitivity as Assessed by Two-Color Dark-Adapted Perimetry in Patients With RPE65-Related Retinopathy Treated With Voretigene Neparvovec-rzyl. Transl Vis Sci Technol 2023; 12:17. [PMID: 37058101 PMCID: PMC10117223 DOI: 10.1167/tvst.12.4.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/19/2023] [Indexed: 04/15/2023] Open
Abstract
Purpose The purpose of this study was to evaluate rod-mediated function with two-color dark-adapted perimetry (2cDAP) in patients with RPE65-related retinopathy treated with voretigene neparvovec-rzyl. Methods Following dilation and dark adaptation, 2cDAP and FST were performed. The 2cDAP was measured on an Octopus 900 perimeter (Haag-Streit) with cyan (500 nm wavelength) and red (650 nm wavelength) stimuli. Hill of vision (HOV) analysis was performed on 2cDAP perimetry with Visual Field Modeling and Analysis (VFMA). Full field threshold stimulus testing (FST) was also measured as a secondary measure of rod-mediated function, and assessed on a Diagnosys Espion with the ColorDome stimulator (Diagnosys LLC). Results Eight eyes from 4 patients who were treated with voretigene bilaterally had rod function assessed by 2cDAP testing at least 1 year after treatment. There was statistically significant improvement in 2cDAP following gene augmentation therapy. HOV VFMA analysis showed widespread improvements that extended beyond the treatment bleb and statistically significant improvement in HOV analysis volumetric measurements post-treatment to cyan and red stimuli. FST testing performed in six eyes from three patients demonstrated statistically significant improvement to all chromatic stimuli following treatment. Conclusions These findings demonstrated statistically significant improvement in 2cDAP and FST following treatment with voretigene. Translational Relevance These findings provide a sensitive method of assessing rod-mediated function in a topographic manner that may be useful in future clinical trials for inherited retinal dystrophies.
Collapse
Affiliation(s)
- Cristy A. Ku
- Department of Ophthalmology, University of California Davis, Sacramento, CA, USA
| | - Austin D. Igelman
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Samuel J. Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Huber Vasconcelos
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mariana Matioli da Palma
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Steven T. Bailey
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andreas K. Lauer
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mark E. Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
11
|
Horie S, Corradetti G, Esmaeilkhanian H, Sadda SR, Cheung CMG, Ham Y, Chang A, Takahashi T, Ohno-Matsui K. Microperimetry in Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2023; 12:211-227. [PMID: 36971707 DOI: 10.1097/apo.0000000000000597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/06/2022] [Indexed: 03/29/2023] Open
Abstract
Retinal microperimetry (MP) is a procedure that assesses the retinal sensitivity while the fundus is directly observed, and an eye tracker system is active to compensate for involuntary eye movements during testing. With this system, the sensitivity of a small locus can be accurately determined, and it has become an established ophthalmic test for retinal specialists. Macular diseases are characterized by chorioretinal changes; therefore, the condition of the retina and choroid requires careful and detailed evaluations to perform effective therapy. Age-related macular degeneration is a representative retinal disease in which the macular function has been evaluated by the visual acuity throughout the course of the disease process. However, the visual acuity represents the physiological function of only the central fovea, and the function of the surrounding macular area has not been sufficiently evaluated throughout the different stages of the macula disease process. The new technique of MP can compensate for such limitations by being able to test the same sites of the macular area repeatedly. This is especially useful in the recent management of age-related macular degeneration or diabetic macular edema during anti-vascular endothelial growth factor treatments because MP can assess the effectiveness of the treatment. MP examinations are also valuable in diagnosing Stargardt disease as they can detect visual impairments before any abnormalities are found in the retinal images. The visual function needs to be carefully assessed along with morphologic observations by optical coherence tomography. In addition, the assessment of retinal sensitivity is useful in the presurgical or postsurgical evaluations.
Collapse
Affiliation(s)
- Shintaro Horie
- Department of Advanced Ophthalmic Imaging, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA, US
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, US
| | - Houri Esmaeilkhanian
- Doheny Eye Institute, Pasadena, CA, US
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, US
| | - SriniVas R Sadda
- Doheny Eye Institute, Pasadena, CA, US
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, US
| | | | - Yeji Ham
- Sydney Retina Clinic and Day Surgery, Sydney, Australia
| | - Andrew Chang
- Sydney Eye Hospital, The University of Sydney, Sydney Retina Clinic and Day Surgery, Sydney, Australia
| | - Tomonari Takahashi
- Department of Advanced Ophthalmic Imaging, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Ohno-Matsui
- Department of Advanced Ophthalmic Imaging, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Kong X, Ibrahim-Ahmed M, Bittencourt MG, Strauss RW, Birch DG, Cideciyan AV, Ervin AM, Ho A, Sunness JS, Audo IS, Michaelides M, Zrenner E, Sadda S, Ip MS, West S, Scholl HPN. Longitudinal Changes in Scotopic and Mesopic Macular Function as Assessed with Microperimetry in Patients With Stargardt Disease: SMART Study Report No. 2. Am J Ophthalmol 2022; 236:32-44. [PMID: 34695402 DOI: 10.1016/j.ajo.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To estimate and compare cross-sectional scotopic versus mesopic macular sensitivity losses measured by microperimetry, and to report and compare the longitudinal rates of scotopic and mesopic macular sensitivity losses in ABCA4 gene-associated Stargardt disease (STGD1). DESIGN This was a multicenter prospective cohort study. METHODS Participants comprised 127 molecularly confirmed STGD1 patients enrolled from 6 centers in the United States and Europe and followed up every 6 months for up to 2 years. The Nidek MP-1S device was used to measure macular sensitivities of the central 20° under mesopic and scotopic conditions. The mean deviations (MD) from normal for mesopic macular sensitivity for the fovea (within 2° eccentricity) and extrafovea (4°-10° eccentricity), and the MD for scotopic sensitivity for the extrafovea, were calculated. Linear mixed effects models were used to estimate mesopic and scotopic changes. Main outcome measures were baseline mesopic mean deviation (mMD) and scotopic MD (sMD) and rates of longitudinal changes in the mMDs and sMD. RESULTS At baseline, all eyes had larger sMD, and the difference between extrafoveal sMD and mMD was 10.7 dB (P < .001). Longitudinally, all eyes showed a statistically significant worsening trend: the rates of foveal mMD and extrafoveal mMD and sMD changes were 0.72 (95% CI = 0.37-1.07), 0.86 (95% CI = 0.58-1.14), and 1.12 (95% CI = 0.66-1.57) dB per year, respectively. CONCLUSIONS In STGD1, in extrafovea, loss of scotopic macular function preceded and was faster than the loss of mesopic macular function. Scotopic and mesopic macular sensitivities using microperimetry provide alternative visual function outcomes for STGD1 treatment trials.
Collapse
Affiliation(s)
- Xiangrong Kong
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA; Department of Biostatistics (X.K.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Epidemiology (X.K., A.-M.E.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Health Behavior and Society (X.K.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | - Millena G Bittencourt
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA
| | - Rupert W Strauss
- Moorfields Eye Hospital and UCL Institute of Ophthalmology (R.W.S., M.M.), London, UK; Department of Ophthalmology (R.W.S.), Kepler University Clinic, Linz, Linz, Austria; Department of Ophthalmology (R.W.S.), Medical University of Graz, Graz, Austria
| | - David G Birch
- Retina Foundation of the Southwest (D.G.B.), Dallas, Texas, USA
| | - Artur V Cideciyan
- Scheie Eye Institute (A.V.C.), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ann-Margaret Ervin
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA; Department of Epidemiology (X.K., A.-M.E.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander Ho
- Doheny Image Reading Center (A.H., S.V.S., M.S.I.), Los Angeles, California, USA
| | - Janet S Sunness
- Greater Baltimore Medical Center (J.S.S.), Baltimore, Maryland, USA
| | - Isabelle S Audo
- CHNO des Quinze-Vingts (I.S.A.), DHU Sight Restore, INSERM-DHOS CIC 1423, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Michel Michaelides
- Moorfields Eye Hospital and UCL Institute of Ophthalmology (R.W.S., M.M.), London, UK
| | - Eberhart Zrenner
- Universitäts-Augenklinik (E.Z.), University of Tübingen, Tübingen, Germany
| | - SriniVas Sadda
- Doheny Image Reading Center (A.H., S.V.S., M.S.I.), Los Angeles, California, USA
| | - Michael S Ip
- Doheny Image Reading Center (A.H., S.V.S., M.S.I.), Los Angeles, California, USA
| | - Sheila West
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA
| | - Hendrik P N Scholl
- Wilmer Eye Institute at the Johns Hopkins University (X.K., M.G.B., A.-M.E., S.W., H.P.N.S.), Baltimore, Maryland, USA; Institute of Molecular and Clinical Ophthalmology Basel (IOB) (H.P.N.S.), Basel, Switzerland; Department of Ophthalmology (H.P.N.S.), University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Stingl K, Hoyng C, Kempf M, Kohl S, Jung R, Righetti G, Kühlewein L, Pohl L, Kortüm F, Kelbsch C, Wilhelm B, Peters T, Stingl K. Evaluation of Local Rod and Cone Function in Stargardt Disease. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 35262734 PMCID: PMC8934563 DOI: 10.1167/iovs.63.3.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose In this study, chromatic pupil campimetry (CPC) was used to map local functional degenerative changes of cones and rods in Stargardt disease (STGD1). Methods 19 patients (age 36 ± 8 years; 12 males) with genetically confirmed ABCA4 mutations and a clinical diagnosis of STGD1 and 12 age-matched controls (age 37 ± 11 years; 2 males) underwent scotopic (rod-favoring) and photopic (cone-favoring) CPC. CPC evaluates the local retinal function in the central 30° visual field via analysis of the pupil constriction to local stimuli in a gaze-corrected manner. Results Scotopic CPC revealed that the rod function of patients with STGD1 inside the 30° visual field was not impaired when compared with age-matched controls. However, a statistically significant faster pupil response onset time (∼ 40 ms) was observed in the measured area. Photopic CPC showed a significant reduction of the central cone function up to 6°, with a minor, non-significant reduction beyond this eccentricity. The time dynamic of the pupillary response in photopic CPC did not reveal differences between STGD1 and controls. Conclusions The functional analysis of the macular region in STGD1 disease indicates reduced central cone function, corresponding to photoreceptor degeneration. In contrast, the rod function in the central area was not affected. Nevertheless, some alteration of the time dynamics in the rod system was observed indicating a complex effect of cone degeneration on the functional performance of the rod system. Our results should be considered when interpreting safety and efficacy in interventional trials of STGD1.
Collapse
Affiliation(s)
- Krunoslav Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | - Carel Hoyng
- Department of Ophthalmology, Radboud University Medical Centre, 6500HB Nijmegen, the Netherlands
| | - Melanie Kempf
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Ronja Jung
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Giulia Righetti
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Lisa Pohl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Friederike Kortüm
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Carina Kelbsch
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Pupil research group, University of Tuebingen, Tuebingen, Germany
| | - Barbara Wilhelm
- Pupil research group, University of Tuebingen, Tuebingen, Germany.,STZ eyetrial at the Center for Ophthalmology, University Tuebingen, Tuebingen, Germany
| | - Tobias Peters
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Pupil research group, University of Tuebingen, Tuebingen, Germany.,STZ eyetrial at the Center for Ophthalmology, University Tuebingen, Tuebingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
14
|
Anikina E, Georgiou M, Tee J, Webster AR, Weleber RG, Michaelides M. Characterization of Retinal Function Using Microperimetry-Derived Metrics in Both Adults and Children With RPGR-Associated Retinopathy. Am J Ophthalmol 2022; 234:81-90. [PMID: 34303686 PMCID: PMC8847997 DOI: 10.1016/j.ajo.2021.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To investigate microperimetry testing of retinitis pigmentosa GTPase regulator gene (RPGR)-associated retinopathy in a cohort of children and adults. DESIGN Prospective observational case series. METHODS The coefficient of repeatability and intraclass correlation coefficient (ICC) of mean sensitivity (MS) were calculated for mesopic microperimetry. Best-corrected visual acuity (BCVA), contrast sensitivity (CS), MS, total volume (VTOT), and central 3-degree field volume (V3) from volumetric and topographic analyses were acquired. RESULTS The study recruited 76 individuals with RPGR (53 adults, 23 children). The mean follow-up period was 2.8 years. The ICC values for MS, VTOT, and V3 were 0.982 dB (95% CI, 0.969-0.989 dB), 0.970 dB-steradian (sr) (95% CI, -0.02658 to 0.03691 dB-sr), and 0.986 dB-sr (95% CI, 0.978-0.991), respectively. The r values for interocular MS, VTOT, and V3 were 0.97 (P < .01), 0.97 (P < .01), and 0.98 (P < .01), respectively, indicating strong interocular correlation. The interocular correlation of progression for MS, VTOT, and V3 was 0.81 (P < .01), 0.64 (P < .01), and 0.81 (P < .01), respectively. There was no statistically significant difference in the interocular progression rates for MS or VTOT. V3 did show a statistically significant difference. Most patients lost retinal sensitivity rapidly during their second and third decades of life. CONCLUSIONS The high degree of reproducibility of results and the good interocular correlation lends this method to accurately monitoring disease progression, as well as supporting validation of the use of MP in assessing the outcomes of gene therapy clinical treatment trials.
Collapse
|
15
|
Parmann R, Tsang SH, Zernant J, Allikmets R, Greenstein VC, Sparrow JR. Comparisons Among Optical Coherence Tomography and Fundus Autofluorescence Modalities as Measurements of Atrophy in ABCA4-Associated Disease. Transl Vis Sci Technol 2022; 11:36. [PMID: 35089312 PMCID: PMC8802021 DOI: 10.1167/tvst.11.1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In ABCA4-associated retinopathy, central atrophy was assessed by spectral domain optical coherence tomography (SD-OCT) and by short-wavelength (SW-AF) and near-infrared (NIR-AF) autofluorescence. Methods Patients exhibited a central atrophic lesion characterized by hypoautofluorescence (hypoAF) surrounded either by hyperautofluorescent (hyperAF) rings in both AF images (group 1, 4 patients); or a hyperAF ring in SW-AF but not in NIR-AF images (group 2, 11 patients); or hyperAF rings in neither AF images (group 3, 11 patients). Choroidal hypertransmission and widths of ellipsoid zone (EZ) loss were measured in foveal SD-OCT scans, and in AF images hypoAF and total hypo+hyperAF widths were measured along the same axis. Bland-Altman and repeated measures analysis of variance with Tukey post hoc were applied. Results For all groups, hypertransmission widths were significantly smaller than EZ loss widths. In Groups 1 and 2, hypertransmission width was not significantly different than SW-hypoAF width, but hypertransmission was narrower than the width of SW-hypo+hyperAF (groups 1, 2) and NIR-hypo+hyperAF (group 1). In group 3, the hypertransmission width was also significantly less than the width of SW-hypoAF and NIR-hypoAF. The EZ loss widths were not significantly different than measurements of total lesion size, the latter being the widths of SW-hypo+hyperAF and NIR-hypo+hyperAF (group 1); widths of NIR-hypoAF and SW-hypo+hyperAF (group 2); and widths of NIR-hypoAF and SW-hypoAF (group 3). Conclusions Hypertransmission and SW-hypoAF (except when reflecting total lesion width) underestimate lesion size detected by EZ loss, SW-hypoAF+hyperAF, and NIR-hypo+hyperAF. Translational Relevance The findings are significant to the selection of outcome measures in clinical studies.
Collapse
Affiliation(s)
- Rait Parmann
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Jana Zernant
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Vivienne C Greenstein
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Harkness Eye Institute, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Daich Varela M, Georgiou M, Hashem SA, Weleber RG, Michaelides M. Functional evaluation in inherited retinal disease. Br J Ophthalmol 2021; 106:1479-1487. [PMID: 34824084 DOI: 10.1136/bjophthalmol-2021-319994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/17/2021] [Indexed: 11/03/2022]
Abstract
Functional assessments are a fundamental part of the clinical evaluation of patients with inherited retinal diseases (IRDs). Their importance and impact have become increasingly notable, given the significant breadth and number of clinical trials and studies investigating multiple avenues of intervention across a wide range of IRDs, including gene, pharmacological and cellular therapies. Moreover, the fact that many clinical trials are reporting improvements in vision, rather than the previously anticipated structural stability/slowing of degeneration, makes functional evaluation of primary relevance. In this review, we will describe a range of methods employed to characterise retinal function and functional vision, beginning with tests variably included in the clinic, such as visual acuity, electrophysiological assessment and colour discrimination, and then discussing assessments often reserved for clinical trials/research studies such as photoaversion testing, full-field static perimetry and microperimetry, and vision-guided mobility testing; addressing perimetry in greatest detail, given it is commonly a primary outcome metric. We will focus on how these tests can help diagnose and monitor particular genotypes, also noting their limitations/challenges and exploring analytical methodologies for better exploiting functional measurements, as well as how they facilitate patient inclusion and stratification in clinical trials and serve as outcome measures.
Collapse
Affiliation(s)
- Malena Daich Varela
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital City Road Campus, London, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital City Road Campus, London, UK.,Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shaima A Hashem
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital City Road Campus, London, UK
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK .,Moorfields Eye Hospital City Road Campus, London, UK
| |
Collapse
|
17
|
Josan AS, Buckley TMW, Wood LJ, Jolly JK, Cehajic-Kapetanovic J, MacLaren RE. Microperimetry Hill of Vision and Volumetric Measures of Retinal Sensitivity. Transl Vis Sci Technol 2021; 10:12. [PMID: 34110386 PMCID: PMC8196404 DOI: 10.1167/tvst.10.7.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mean retinal sensitivity is the main output measure used in microperimetry. It is, however, of limited use in patients with poor vision because averaging is weighted toward zero in those with significant scotomas creating an artificial floor effect. In contrast, volumetric measures avoid these issues and are displayed graphically as a hill of vision. Methods An open-source program was created to manipulate raw sensitivity threshold data files obtained from MAIA microperimetry. Thin plate spline interpolated heat maps and three-dimensional hill of vision plots with an associated volume were generated. Retrospective analyses of microperimetry volumes were undertaken in patients with a range of retinal diseases to assess the qualitative benefits of three-dimensional visualization and volumetric measures. Simulated pathology was applied to radial grid patterns to investigate the performance of volumetric sensitivity in nonuniform grids. Results Volumetric analyses from microperimetry in RPGR-related retinitis pigmentosa, choroideremia, Stargardt disease, and age-related macular degeneration were analyzed. In simulated nonuniform testing grids, volumetric sensitivity was able to detect differences in retinal sensitivity where mean sensitivity could not. Conclusions Volumetric measures do not suffer from averaging issues and demonstrate superior performance in nonuniform testing grids. Additionally, volume measures enable detection of localized retinal sensitivity changes that might otherwise be undetectable in a mean change. Translational Relevance As microperimetry has become an outcome measure in several gene-therapy clinical trials, three-dimensional visualization and volumetric sensitivity enables a complementary analysis of baseline disease characteristics and subsequent response to treatment, both as a signal of safety and efficacy.
Collapse
Affiliation(s)
- Amandeep Singh Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas M. W. Buckley
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laura J. Wood
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasleen K. Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
18
|
Georgiou M, Singh N, Kane T, Zaman S, Hirji N, Aboshiha J, Kumaran N, Kalitzeos A, Carroll J, Weleber RG, Michaelides M. Long-Term Investigation of Retinal Function in Patients with Achromatopsia. Invest Ophthalmol Vis Sci 2021; 61:38. [PMID: 32960951 PMCID: PMC7509756 DOI: 10.1167/iovs.61.11.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the long-term natural history of retinal function of achromatopsia (ACHM). Methods Subjects with molecularly confirmed ACHM were recruited in a prospective cohort study of mesopic microperimetry. Coefficient of repeatability and intraclass correlation coefficient (ICC) of mean sensitivity (MS) were calculated. Best-corrected visual acuity (BCVA), bivariate contour ellipse area (BCEA), contrast sensitivity (CS), MS, total volume (VTOT), and central field volume (V5°) from volumetric and topographic analyses were acquired. Correlation of functional parameters with structural findings from optical coherence tomography (OCT) was performed. Results Eighteen subjects were recruited. Mean follow-up was 7.2 years. The MS test–retest repeatability coefficient was 1.65 decibels (dB), and the ICC was 0.973 (95% confidence interval, 0.837–0.98). Mean MS was similar for right and left eyes (16.97dB and 17.14dB, respectively). A negative significant correlation between logMAR BCVA and the retinal sensitivity indices (MS, VTOT, V5°) was found. A significant negative correlation between logCS and MS, VTOT, and V5° was also observed. BCVA and BCEA improved during follow-up. Mean CS, MS, VTOT, and V5° at final follow-up were similar to baseline. MS was similar between CNGA3- and CNGB3-ACHM. Patients with and without the presence of a foveal ellipsoid zone on OCT had similar MS (16.64 dB and 17.17 dB, respectively). Conclusions We demonstrate a highly reproducible assessment of MS. Retinal function including MS, volumetric indices, and CS are stable in ACHM. Improvement of fixation stability and small changes of BCVA over time may be part of the natural history of the disease.
Collapse
Affiliation(s)
- Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Navjit Singh
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Thomas Kane
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Serena Zaman
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Nashila Hirji
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Jonathan Aboshiha
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
19
|
Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: Therapeutics, clinical trials and end points-A review. Clin Exp Ophthalmol 2021; 49:270-288. [PMID: 33686777 DOI: 10.1111/ceo.13917] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of disorders characterised by photoreceptor degeneration or dysfunction. These disorders typically present with severe vision loss that can be progressive, with disease onset ranging from congenital to late adulthood. The advances in genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRDs, with the first approved gene therapy and the commencement of multiple clinical trials. The scope of this review is to familiarise clinicians and scientists with the current management and the prospects for novel therapies for: (1) macular dystrophies, (2) cone and cone-rod dystrophies, (3) cone dysfunction syndromes, (4) Leber congenital amaurosis, (5) rod-cone dystrophies, (6) rod dysfunction syndromes and (7) chorioretinal dystrophies. We also briefly summarise the investigated end points for the ongoing trials.
Collapse
Affiliation(s)
- Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Yang Y, Dunbar H. Clinical Perspectives and Trends: Microperimetry as a trial endpoint in retinal disease. Ophthalmologica 2021; 244:418-450. [PMID: 33567434 DOI: 10.1159/000515148] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 11/19/2022]
Abstract
Endpoint development trials are underway across the spectrum of retinal disease. New validated endpoints are urgently required for the assessment of emerging gene therapies and in preparation for the arrival of novel therapeutics targeting early stages of common sight-threatening conditions such as age-related macular degeneration. Visual function measures are likely to be key candidates in this search. Over the last two decades, microperimetry has been used extensively to characterize functional vision in a wide range of retinal conditions, detecting subtle defects in retinal sensitivity that precede visual acuity loss and tracking disease progression over relatively short periods. Given these appealing features, microperimetry has already been adopted as an endpoint in interventional studies, including multicenter trials, on a modest scale. A review of its use to date shows a concurrent lack of consensus in test strategy and a wealth of innovative disease and treatment-specific metrics which may show promise as clinical trial endpoints. There are practical issues to consider, but these have not held back its popularity and it remains a widely used psychophysical test in research. Endpoint development trials will undoubtedly be key in understanding the validity of microperimetry as a clinical trial endpoint, but existing signs are promising.
Collapse
Affiliation(s)
- Yesa Yang
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Hannah Dunbar
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Starace V, Battista M, Brambati M, Pederzolli M, Viganò C, Arrigo A, Cicinelli MV, Bandello F, Parodi MB. Genotypic and phenotypic factors influencing the rate of progression in ABCA-4-related Stargardt disease. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2021.1860753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Pederzolli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Viganò
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Analysis of retinal sublayer thicknesses and rates of change in ABCA4-associated Stargardt disease. Sci Rep 2020; 10:16576. [PMID: 33024232 PMCID: PMC7538899 DOI: 10.1038/s41598-020-73645-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Stargardt disease, the most common inherited macular dystrophy, is characterized by vision loss due to central retinal atrophy. Although clinical trials for Stargardt are currently underway, the disease is typically slowly progressive, and objective, imaging-based biomarkers are critically needed. In this retrospective, observational study, we characterize the thicknesses of individual retinal sublayers by macular optical coherence tomography (OCT) in a large cohort of patients with molecularly-confirmed, ABCA4-associated Stargardt disease (STGD1) relative to normal controls. Automated segmentation of retinal sublayers was performed with manual correction as needed, and thicknesses in various macular regions were compared using mixed effects models. Relative to controls (42 eyes, 40 patients), STGD1 patients (107 eyes, 63 patients) had slight thickening of the nerve fiber layer and retinal pigment epithelium-Bruch’s membrane, with thinning in other sublayers, especially the outer nuclear layer (ONL) (p < 0.0015). When comparing the rate of retinal sublayer thickness change over time (mean follow-up 3.9 years for STGD1, 2.5 years for controls), STGD1 retinas thinned faster than controls in the outer retina (ONL to photoreceptor outer segments). OCT-based retinal sublayer thickness measurements are feasible in STGD1 patients and may provide objective measures of disease progression or treatment response.
Collapse
|
23
|
Abstract
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population. The advances in ocular genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRD, with the first approved gene therapy and the commencement of multiple therapy trials. The scope of this review is to familiarize clinicians and scientists with the current landscape of retinal imaging in IRD. Herein we present in a comprehensive and concise manner the imaging findings of: (I) macular dystrophies (MD) [Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), pattern dystrophy (PRPH2), Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)], (II) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4 and RPGR), (III) cone dysfunction syndromes [achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6], blue-cone monochromatism (OPN1LW/OPN1MW array), oligocone trichromacy, bradyopsia (RGS9/R9AP) and Bornholm eye disease (OPN1LW/OPN1MW), (IV) Leber congenital amaurosis (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (V) rod-cone dystrophies [retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)], (VI) rod dysfunction syndromes (congenital stationary night blindness, fundus albipunctatus (RDH5), Oguchi disease (SAG, GRK1), and (VII) chorioretinal dystrophies [choroideremia (CHM), gyrate atrophy (OAT)].
Collapse
Affiliation(s)
- Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Liu X, Meng X, Yang L, Long Y, Fujinami-Yokokawa Y, Ren J, Kurihara T, Tsubota K, Tsunoda K, Fujinami K, Li S. Clinical and genetic characteristics of Stargardt disease in a large Western China cohort: Report 1. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:694-707. [PMID: 32845068 DOI: 10.1002/ajmg.c.31838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
Stargardt disease 1 (STGD1) is the most prevalent retinal dystrophy caused by pathogenic biallelic ABCA4 variants. Forty-two unrelated patients mostly originating from Western China were recruited. Comprehensive ophthalmological examinations, including visual acuity measurements (subjective function), fundus autofluorescence (retinal imaging), and full-field electroretinography (objective function), were performed. Next-generation sequencing (target/whole exome) and direct sequencing were conducted. Genotype grouping was performed based on the presence of deleterious variants. The median age of onset/age was 10.0 (5-52)/29.5 (12-72) years, and the median visual acuity in the right/left eye was 1.30 (0.15-2.28)/1.30 (0.15-2.28) in the logarithm of the minimum angle of resolution unit. Ten patients (10/38, 27.0%) showed confined macular dysfunction, and 27 (27/37, 73.7%) had generalized retinal dysfunction. Fifty-eight pathogenic/likely pathogenic ABCA4 variants, including 14 novel variants, were identified. Eight patients (8/35, 22.8%) harbored multiple deleterious variants, and 17 (17/35, 48.6%) had a single deleterious variant. Significant associations were revealed between subjective functional, retinal imaging, and objective functional groups, identifying a significant genotype-phenotype association. This study illustrates a large phenotypic/genotypic spectrum in a large well-characterized STGD1 cohort. A distinct genetic background of the Chinese population from the Caucasian population was identified; meanwhile, a genotype-phenotype association was similarly represented.
Collapse
Affiliation(s)
- Xiao Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lizhu Yang
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yanling Long
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.,Department of Public Health Research, Yokokawa Clinic, Osaka, Japan
| | - Jiayun Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | |
Collapse
|
25
|
Prospective Cohort Study of Childhood-Onset Stargardt Disease: Fundus Autofluorescence Imaging, Progression, Comparison with Adult-Onset Disease, and Disease Symmetry. Am J Ophthalmol 2020; 211:159-175. [PMID: 31812472 PMCID: PMC7082771 DOI: 10.1016/j.ajo.2019.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine the reliability and repeatability of quantitative evaluation of areas of decreased autofluorescence (DAF) from fundus autofluorescence (FAF) images and track disease progression in children with Stargardt disease (STGD1), and to investigate clinical and genotype correlations, disease symmetry, and intrafamilial variability. DESIGN Prospective cohort study. METHODS Children and adults with molecularly confirmed STGD1 (n = 90) underwent longitudinal FAF imaging with subsequent semiautomated measurement of the area of DAF and calculation of the annual rate of progression. The age of disease onset was recorded for all subjects, as well as the electroretinography (ERG) group at baseline (n = 86). Patients were grouped for analysis based on the age at baseline and age of onset, into children (n = 56), adults with childhood-onset STGD1 (n = 15), and adults with adult-onset (n = 19). Fifty FAF images were selected randomly and analyzed by 2 observers to evaluate repeatability and reproducibility. Differences between groups, interocular symmetry, genotype-phenotype correlations, and intrafamilial variability were also investigated both for baseline measurements as well as progression rates. We measured visual acuity, molecular genetics, ERG group, FAF metrics, and their correlations. RESULTS The mean age of onset ± SD was 9.6 ± 3.4 years for childhood-onset (n = 71) and 28.3 ± 7.8 years for adult-onset STGD1 (n = 19). The intra- and interobserver reliability of DAF quantification was excellent (intraclass correlation coefficients 0.995 and 0.987, respectively). DAF area was symmetric between eyes and the mean rate of progression (SD) was 0.69 (0.72), 0.78 (0.48), and 0.40 (0.36) mm2/year for children, adults with childhood-onset, and adults with adult-onset disease, respectively. Patients belonging to a group 3 ERG phenotype (generalized cone and rod dysfunction) had a significantly greater progression rate. Limited intrafamilial variability was observed. CONCLUSIONS This is the first large prospective study of FAF in a cohort of molecularly confirmed children with STGD1. DAF area quantification was highly reliable and may thereby serve as a robust structural endpoint. A high rate of progression was observed in childhood-onset disease, making this subtype of STGD1 ideally suited to be considered for prioritization in clinical trials.
Collapse
|
26
|
Rahman N, Georgiou M, Khan KN, Michaelides M. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol 2019; 104:451-460. [PMID: 31704701 PMCID: PMC7147237 DOI: 10.1136/bjophthalmol-2019-315086] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 11/03/2022]
Abstract
Macular dystrophies (MDs) consist of a heterogeneous group of disorders that are characterised by bilateral symmetrical central visual loss. Advances in genetic testing over the last decade have led to improved knowledge of the underlying molecular basis. The developments in high-resolution multimodal retinal imaging have also transformed our ability to make accurate and more timely diagnoses and more sensitive quantitative assessment of disease progression, and allowed the design of optimised clinical trial endpoints for novel therapeutic interventions. The aim of this review was to provide an update on MDs, including Stargardt disease, Best disease, X-linked r etinoschisis, pattern dystrophy, Sorsby fundus dystrophy and autosomal dominant drusen. It highlights the range of innovations in retinal imaging, genotype-phenotype and structure-function associations, animal models of disease and the multiple treatment strategies that are currently in clinical trial or planned in the near future, which are anticipated to lead to significant changes in the management of patients with MDs.
Collapse
Affiliation(s)
| | - Michalis Georgiou
- Moorfields Eye Hospital, London, UK.,Institute of Ophthalmology, UCL, London, UK
| | - Kamron N Khan
- Ophthalmology Department, St James's University Hospital, Leeds, UK
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK .,Institute of Ophthalmology, UCL, London, UK
| |
Collapse
|
27
|
Mastropasqua R, Senatore A, Di Antonio L, Di Nicola M, Marchioni M, Perna F, Amore F, Borrelli E, De Nicola C, Carpineto P, Toto L. Correlation between Choriocapillaris Density and Retinal Sensitivity in Stargardt Disease. J Clin Med 2019; 8:jcm8091432. [PMID: 31510083 PMCID: PMC6780313 DOI: 10.3390/jcm8091432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 02/03/2023] Open
Abstract
The aim of this work was to characterize the choriocapillaris (CC) in patients with Stargardt disease (STGD) using the swept source widefield optical coherence tomography angiography (SS WF OCTA) and to compare CC perfusion density to retinal sensitivity, analyzed using microperimetry (MP). This cross-sectional study included 9 patients (18 eyes) with STGD and central CC atrophy (stage 3 STGD). The CC was analyzed using SS WF OCTA and areas of different CC impairment were quantified and correlated with retinal sensitivity analyzed using MP. The main outcome measures were the percent perfused choriocapillaris area (PPCA), retinal sensitivity, and correlation between PPCA and retinal sensitivity. Seventeen eyes of 9 patients suffering from stage 3 STGD were analyzed. SS WF OCTA revealed a vascular rarefaction in central atrophic zones and a near atrophy halo of choriocapillaris impairment. In all eyes were noticed a central atrophy (CA) area with absolute absence of CC that corresponded to 0 dB points at MP, a near atrophy (NA) zone of PPCA impairment that included points with decreased sensitivity at MP and a distant from atrophy (DA) zone with higher PPCA and retinal sensitivity values. The mean difference of PPCA and retinal sensitivity between NA and CA and DA and CA was statistical significantly different (p < 0.01), the latter showing higher values. A direct relationship between PPCA and retinal sensitivity was found (p < 0.001). Choriocapillaris damage evaluated using SS WF OCTA correlates with MP, these data suggest that CC impairment may be a predictor of retinal function in patients with STGD.
Collapse
Affiliation(s)
- Rodolfo Mastropasqua
- Ophthalmology Clinic, University of Marche, 60126 Ancona, Italy
- Vitreoretinal Unit, Bristol Eye Hospital, University of Bristol, Bristol BS8 1TH, UK
| | - Alfonso Senatore
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy.
- Duke Eye Center, Duke University, Durham, NC 27705, USA.
| | - Luca Di Antonio
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University "G. d'Annunzio" Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University "G. d'Annunzio" Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Fabiana Perna
- National Center for Services and Research for the Prevention of Blindness and Visual Rehabilitation of the Visually Impaired, 00100 Rome, Italy
| | - Filippo Amore
- National Center for Services and Research for the Prevention of Blindness and Visual Rehabilitation of the Visually Impaired, 00100 Rome, Italy
| | - Enrico Borrelli
- Ophthalmology Department, San Raffaele University Hospital, 20132 Milan, Italy
| | - Chiara De Nicola
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Paolo Carpineto
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Lisa Toto
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|