1
|
Filippatou A, Theodorou A, Stefanou MI, Tzanetakos D, Kitsos D, Moschovos C, Koutsouraki E, Tzartos JS, Giannopoulos S, Voumvourakis K, Tsivgoulis G. Optical coherence tomography and angiography in multiple sclerosis: A systematic review and meta-analysis. J Neurol Sci 2025; 470:123422. [PMID: 39954575 DOI: 10.1016/j.jns.2025.123422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND OBJECTIVES Anterior visual pathway involvement is common in multiple sclerosis (MS) and optical coherence tomography (OCT) can be utilized to examine the integrity of the ganglion cell axons (peri-papillary retinal nerve fiber layer; pRNFL) and cell bodies (ganglion cell & inner plexiform layer; GCIPL). OCT angiography (OCTA) can be used to investigate the retinal microvasculature. In this systematic review and meta-analysis, we synthesized OCT and OCTA findings in MS. METHODS We identified studies that performed OCT and OCTA in people with MS and included data permitting at least one of the following comparisons: 1) MS optic neuritis (MS-ON) vs healthy-control (HC) eyes; 2) MS non-ON (MS-NON) vs HC eyes; and 3) MS-ON vs MS-NON eyes. RESULTS The OCT meta-analysis included 170 studies and 8542 HC, 5529 MS-ON, and 14,822 MS-NON eyes. MS-ON and MS-NON eyes had lower pRNFL and GCIPL thickness compared to HC. There was no difference in inner nuclear layer (INL) thickness between HC and MS; INL was thicker in MS-ON compared to MS-NON eyes. The OCTA meta-analysis included 24 studies and 1344 HC, 505 MS-ON, and 1168 MS-NON eyes. MS-ON and MS-NON eyes had lower peripapillary vessel density and macular superficial vessel density compared to HC. We also summarized 12 studies evaluating the diagnostic yield of inter-eye differences in OCT measurements for detecting unilateral optic nerve involvement. CONCLUSIONS OCT allows for reliable quantification of retinal neuro-axonal damage in MS. In our review, we highlight studies demonstrating that OCT can establish robust thresholds for detecting unilateral optic nerve involvement.
Collapse
Affiliation(s)
- Angeliki Filippatou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Dimitrios Tzanetakos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kitsos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Moschovos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Effrosyni Koutsouraki
- First Department of Neurology, "AHEPA" University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John S Tzartos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Petropoulos IN, Aly KE, Al-Thani S, Ponirakis G, Gad H, Khan A, Canibano B, Deleu D, Akhtar N, Melikyan G, Mesraoua B, Siddiqi M, Perkins J, Mir N, Francis R, Salam A, El-Sotouhy A, Vattoth S, Own A, Kamran S, Malik RA. Corneal Confocal Microscopy Identifies and Differentiates Patients With Multiple Sclerosis and Epilepsy. Transl Vis Sci Technol 2024; 13:22. [PMID: 39671224 PMCID: PMC11645731 DOI: 10.1167/tvst.13.12.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
Purpose To assess whether corneal nerve analysis can identify and differentiate patients with multiple sclerosis (MS) from those with epilepsy. Methods Participants with MS (n = 83), participants with epilepsy (n = 50), and healthy controls (HCs) (n = 20) underwent corneal confocal microscopy (CCM) and quantification of automated corneal nerve fiber length (ACNFL), automated corneal nerve fractal dimension (ACNFrD), and ACNFrD/ACNFL ratio of the subbasal nerve plexus. Results ACNFL (MS: P < 0.0001; epilepsy: P = 0.002) and ACNFrD (MS: P < 0.0001; epilepsy: P = 0.025) were significantly lower and the ACNFrD/ACNFL ratio (MS: P < 0.0001; epilepsy: P = 0.018) was significantly higher compared to HCs. ACNFL (P = 0.001), ACNFrD (P = 0.0003), and ACNFrD/ACNFL ratio (P = 0.006) were significantly lower in patients with MS compared to those with epilepsy. ACNFL had the highest diagnostic utility for identifying patients with MS (sensitivity/specificity 0.86/0.85, area under the curve [AUC] 0.90, P < 0.0001), and ACNFrD had the highest diagnostic utility for identifying patients with epilepsy (sensitivity/specificity 0.78/0.75, AUC 0.76, P = 0.0008). ACNFrD had the highest diagnostic utility for differentiating patients with MS from epilepsy (sensitivity/specificity 0.66/0.65, AUC 0.70, <0.0001). Conclusions Corneal neurodegeneration occurs in and is characterized by a distinct pattern that differentiates patients with MS and epilepsy. Translational Relevance CCM identifies and differentiates patients with MS and epilepsy, albeit with moderate performance. Further validation, with a larger sample size, is needed.
Collapse
Affiliation(s)
| | | | - Shaikha Al-Thani
- Division of Research, Weill Cornell Medicine Qatar, Doha, Qatar
- Emergency Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Hoda Gad
- Division of Research, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Adnan Khan
- Division of Research, Weill Cornell Medicine Qatar, Doha, Qatar
- Faculty of Health Sciences, Khyber Medical University, Peshawar, Pakistan
| | | | - Dirk Deleu
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
| | - Naveed Akhtar
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
| | - Gayane Melikyan
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
| | | | - Maria Siddiqi
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
| | - Jon Perkins
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
| | - Novsheen Mir
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
| | - Reny Francis
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Salam
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
- Epidemiology and Biostatistics Administration, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ahmed El-Sotouhy
- Department of Neuroradiology, Hamad Medical Corporation, Doha, Qatar
- Clinical Radiology, Medication Education, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Surjith Vattoth
- Division of Neuroradiology, Rush University Medical Center, Chicago, IL, USA
| | - Ahmed Own
- Department of Neuroradiology, Hamad Medical Corporation, Doha, Qatar
| | - Saadat Kamran
- Department of Neurology, Hamad Medical Corporation, Doha, Qatar
| | - Rayaz A. Malik
- Division of Research, Weill Cornell Medicine Qatar, Doha, Qatar
| |
Collapse
|
3
|
Hashemi H, Khabazkhoob M, Heydarian S, Emamian MH, Fotouhi A. Five-year changes in retinal nerve fibre layer thickness in the adult population: a population-based cohort study. Clin Exp Optom 2024:1-9. [PMID: 39374949 DOI: 10.1080/08164622.2024.2410879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
CLINICAL RELEVANCE Distinguishing between the pathological thinning of the retinal nerve fibre layer (RNFL) and age-related reduction requires a comprehensive understanding of the longitudinal changes in RNFL thickness within a healthy population. BACKGROUND To determine five-year changes in RNFL thickness and associated factors in people aged 45-69 years. METHODS This report pertains to the second and third phases of the Shahroud Eye Cohort Study. Participants were recruited by a multi-stage cluster sampling in Shahroud, Iran. Data on demographic details, visual acuity, non-cycloplegic refraction, and slit-lamp biomicroscopy were collected. High-definition optical coherence tomography was employed for retinal imaging. RESULTS A total of 1,524 eyes from 908 participants were examined. The average RNFL thickness was 92.2 ± 8.5 (95% CI: 91.6 to 92.8) and 93.1 ± 8.7 μm (95% CI: 92.5 to 93.7) in the first and second phases with a five-year mean change of 0.95 ± 4.15 μm (95% CI: 0.70 to 1.20). The RNFL thickness mean changes in the superior, inferior, nasal, and temporal quadrants were 2.51 ± 7.86 (95% CI: 2.01 to 3.02), 2.93 ± 7.39 (95% CI: 2.56 to 3.29), -0.53 ± 6.15 (95% CI: -0.84 to -0.21), and -1.01 ± 4.67 μm (95% CI: -1.27 to -0.75), respectively. The five-year changes in average RNFL thickness were inversely correlated with axial length (β = -0.69, p < 0.001), mean keratometry (β = -0.37, p = 0.017), and baseline RNFL thickness (β = -0.617, p < 0.001). In hyperopic individuals, the increase in average RNFL thickness (β = 0.65, p = 0.012) was significantly greater than in those with emmetropia. Macular volume (β = 1.65, p < 0.001) showed a direct association with five-year changes in average RNFL thickness. CONCLUSION Over 5 years, RNFL thickness changes were clinically insignificant in the normal population. The mean RNFL thickness seems to remain stable unless there is ocular disease. However, increased axial length and steeper keratometric readings were linked to RNFL thinning. Those with thicker RNFL measurements were at higher risk of thinning over time.
Collapse
Affiliation(s)
- Hassan Hashemi
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
| | - Mehdi Khabazkhoob
- Department of Medical Surgical Nursing, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Heydarian
- Department of Rehabilitation Science, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hassan Emamian
- Ophthalmic Epidemiology Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Suh A, Hampel G, Vinjamuri A, Ong J, Kamran SA, Waisberg E, Paladugu P, Zaman N, Sarker P, Tavakkoli A, Lee AG. Oculomics analysis in multiple sclerosis: Current ophthalmic clinical and imaging biomarkers. Eye (Lond) 2024; 38:2701-2710. [PMID: 38858520 PMCID: PMC11427571 DOI: 10.1038/s41433-024-03132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal damage. Early recognition and treatment are important for preventing or minimizing the long-term effects of the disease. Current gold standard modalities of diagnosis (e.g., CSF and MRI) are invasive and expensive in nature, warranting alternative methods of detection and screening. Oculomics, the interdisciplinary combination of ophthalmology, genetics, and bioinformatics to study the molecular basis of eye diseases, has seen rapid development through various technologies that detect structural, functional, and visual changes in the eye. Ophthalmic biomarkers (e.g., tear composition, retinal nerve fibre layer thickness, saccadic eye movements) are emerging as promising tools for evaluating MS progression. The eye's structural and embryological similarity to the brain makes it a potentially suitable assessment of neurological and microvascular changes in CNS. In the advent of more powerful machine learning algorithms, oculomics screening modalities such as optical coherence tomography (OCT), eye tracking, and protein analysis become more effective tools aiding in MS diagnosis. Artificial intelligence can analyse larger and more diverse data sets to potentially discover new parameters of pathology for efficiently diagnosing MS before symptom onset. While there is no known cure for MS, the integration of oculomics with current modalities of diagnosis creates a promising future for developing more sensitive, non-invasive, and cost-effective approaches to MS detection and diagnosis.
Collapse
Affiliation(s)
- Alex Suh
- Tulane University School of Medicine, New Orleans, LA, USA.
| | - Gilad Hampel
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Ethan Waisberg
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Phani Paladugu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Galveston, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
5
|
Oh J, Airas L, Harrison D, Järvinen E, Livingston T, Lanker S, Malik RA, Okuda DT, Villoslada P, de Vries HE. Neuroimaging to monitor worsening of multiple sclerosis: advances supported by the grant for multiple sclerosis innovation. Front Neurol 2023; 14:1319869. [PMID: 38107636 PMCID: PMC10722910 DOI: 10.3389/fneur.2023.1319869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Key unmet needs in multiple sclerosis (MS) include detection of early pathology, disability worsening independent of relapses, and accurate monitoring of treatment response. Collaborative approaches to address these unmet needs have been driven in part by industry-academic networks and initiatives such as the Grant for Multiple Sclerosis Innovation (GMSI) and Multiple Sclerosis Leadership and Innovation Network (MS-LINK™) programs. We review the application of recent advances, supported by the GMSI and MS-LINK™ programs, in neuroimaging technology to quantify pathology related to central pathology and disease worsening, and potential for their translation into clinical practice/trials. GMSI-supported advances in neuroimaging methods and biomarkers include developments in magnetic resonance imaging, positron emission tomography, ocular imaging, and machine learning. However, longitudinal studies are required to facilitate translation of these measures to the clinic and to justify their inclusion as endpoints in clinical trials of new therapeutics for MS. Novel neuroimaging measures and other biomarkers, combined with artificial intelligence, may enable accurate prediction and monitoring of MS worsening in the clinic, and may also be used as endpoints in clinical trials of new therapies for MS targeting relapse-independent disease pathology.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Daniel Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD, United States
| | - Elina Järvinen
- Neurology and Immunology, Medical Unit N&I, Merck OY (an affiliate of Merck KGaA), Espoo, Finland
| | - Terrie Livingston
- Patient Solutions and Center of Excellence Strategic Engagement, EMD Serono, Inc., Rockland, MA, United States
| | - Stefan Lanker
- Neurology & Immunology, US Medical Affairs, EMD Serono Research & Development Institute, Inc., (an affiliate of Merck KGaA), Billerica, MA, United States
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Research Division, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Darin T. Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, UT Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Villoslada
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Helga E. de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
6
|
Petropoulos IN, John K, Al-Shibani F, Ponirakis G, Khan A, Gad H, Mahfoud ZR, Altarawneh H, Rehman MH, Al-Merekhi D, George P, Ibrahim F, Francis R, Canibano B, Deleu D, El-Sotouhy A, Vattoth S, Stettner M, Own A, Shuaib A, Akhtar N, Kamran S, Malik RA. Corneal immune cells as a biomarker of inflammation in multiple sclerosis: a longitudinal study. Ther Adv Neurol Disord 2023; 16:17562864231204974. [PMID: 37915502 PMCID: PMC10617262 DOI: 10.1177/17562864231204974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Background Corneal immune cells (ICs) are antigen-presenting cells that are known to increase ocular and systemic inflammatory conditions. Objective We aimed to assess longitudinal changes in corneal IC in patients with multiple sclerosis (MS) and relation to disability and ongoing treatment. Design Prospective observational study conducted between September 2016 and February 2020. Methods Patients with relapsing-remitting MS (RRMS) (n = 45) or secondary progressive MS (SPMS) (n = 15) underwent corneal confocal microscopy (CCM) at baseline and 2-year follow-up for estimation of corneal IC density [dendritic cells with (DCF) (cells/mm2) or without nerve fiber contact (DCP); and non-dendritic cells with (NCF) or without nerve fiber contact (NCP)]. Optical coherence tomography, neuroimaging, and disability assessments were additionally performed. Healthy controls (n = 20) were assessed at baseline. Results In both RRMS and SPMS compared to controls, DCP (p < 0.001 and p < 0.001, respectively) and DCF (p < 0.001 and p = 0.005) were higher and NCF (p = 0.007 and p = 0.02) was lower at baseline. DCP showed excellent performance in identifying patients with MS (sensitivity/specificity = 0.88/0.90) followed by DCF (0.80/0.75) and NCF (0.80/0.85). At follow-up compared to baseline, DCP (p = 0.01) was significantly reduced, and NCP (p = 0.004) and NCF (p = 0.04) were increased. Subgroup analysis showed that baseline NCP and NCF were significantly higher (p = 0.04-0.05) in patients who switched disease-modifying treatment, and baseline NCP (p = 0.05) was higher in patients on interferon. Conclusion Baseline and change in corneal IC were related to axonal degeneration and treatment status. Evaluation of corneal IC using CCM may allow an assessment of ongoing inflammation, disease progression, and the effect of treatment in MS.
Collapse
Affiliation(s)
| | - Karen John
- Division of Research, Weill Cornell Medicine, Doha, Qatar
| | | | | | - Adnan Khan
- Division of Research, Weill Cornell Medicine, Doha, Qatar
| | - Hoda Gad
- Division of Research, Weill Cornell Medicine, Doha, Qatar
| | - Ziyad R. Mahfoud
- Division of Medical Education, Weill Cornell Medicine, Doha, Qatar
- Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Pooja George
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Faiza Ibrahim
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Reny Francis
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Dirk Deleu
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Surjith Vattoth
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Ahmed Own
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, University of Alberta, Edmonton, Qatar
| | - Naveed Akhtar
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Saadat Kamran
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar of Cornell University, Research Division, Qatar Foundation, Education City, Al-Luqta street, Doha 24144, Qatar
| |
Collapse
|
7
|
Recovery of Corneal Innervation after Treatment in Dry Eye Disease: A Confocal Microscopy Study. J Clin Med 2023; 12:jcm12051841. [PMID: 36902628 PMCID: PMC10003258 DOI: 10.3390/jcm12051841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
PURPOSE To analyze the changes in corneal innervation by means of in vivo corneal confocal microscopy (IVCM) in patients diagnosed with Evaporative (EDE) and Aqueous Deficient Dry Eye (ADDE) and treated with a standard treatment for Dry Eye Disease (DED) in combination with Plasma Rich in Growth Factors (PRGF). METHODS Eighty-three patients diagnosed with DED were enrolled in this study and included in the EDE or ADDE subtype. The primary variables analyzed were the length, density and number of nerve branches, and the secondary variables were those related to the quantity and stability of the tear film and the subjective response of the patients measured with psychometric questionnaires. RESULTS The combined treatment therapy with PRGF outperforms the standard treatment therapy in terms of subbasal nerve plexus regeneration, significantly increasing length, number of branches and nerve density, as well as significantly improving the stability of the tear film (p < 0.05 for all of them), and the most significant changes were located in the ADDE subtype. CONCLUSIONS the corneal reinnervation process responds in a different way depending on the treatment prescribed and the subtype of dry eye disease. In vivo confocal microscopy is presented as a powerful technique in the diagnosis and management of neurosensory abnormalities in DED.
Collapse
|
8
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
9
|
Petropoulos IN, Al-Shibani F, Bitirgen G, Ponirakis G, Khan A, Gad H, Mahfoud ZR, Altarawneh H, Rehman MH, John K, Al-Merekhi D, George P, Uca AU, Ozkagnici A, Ibrahim F, Francis R, Canibano B, Deleu D, El-Sotouhy A, Vattoth S, Own A, Shuaib A, Akhtar N, Kamran S, Malik RA. Corneal axonal loss as an imaging biomarker of neurodegeneration in multiple sclerosis: a longitudinal study. Ther Adv Neurol Disord 2023; 16:17562864221118731. [PMID: 36776530 PMCID: PMC9909084 DOI: 10.1177/17562864221118731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/23/2022] [Indexed: 02/09/2023] Open
Abstract
Background Resourceful endpoints of axonal loss are needed to predict the course of multiple sclerosis (MS). Corneal confocal microscopy (CCM) can detect axonal loss in patients with clinically isolated syndrome and established MS, which relates to neurological disability. Objective To assess corneal axonal loss over time in relation to retinal atrophy, and neurological and radiological abnormalities in MS. Methods Patients with relapsing-remitting (RRMS) (n = 68) or secondary progressive MS (SPMS) (n = 15) underwent CCM and optical coherence tomography. Corneal nerve fibre density (CNFD-fibres/mm2), corneal nerve branch density (CNBD-branches/mm2), corneal nerve fibre length (CNFL-mm/mm2) and retinal nerve fibre layer (RNFL-μm) thickness were quantified along with neurological and radiological assessments at baseline and after 2 years of follow-up. Age-matched, healthy controls (n = 20) were also assessed. Results In patients with RRMS compared with controls at baseline, CNFD (p = 0.004) and RNFL thickness (p < 0.001) were lower, and CNBD (p = 0.003) was higher. In patients with SPMS compared with controls, CNFD (p < 0.001), CNFL (p = 0.04) and RNFL thickness (p < 0.001) were lower. For identifying RRMS, CNBD had the highest area under the receiver operating characteristic (AUROC) curve (0.99); and for SPMS, CNFD had the highest AUROC (0.95). At follow-up, there was a further significant decrease in CNFD (p = 0.04), CNBD (p = 0.001), CNFL (p = 0.008) and RNFL (p = 0.002) in RRMS; in CNFD (p = 0.04) and CNBD (p = 0.002) in SPMS; and in CNBD (p = 0.01) in SPMS compared with RRMS. Follow-up corneal nerve loss was greater in patients with new enhancing lesions and optic neuritis history. Conclusion Progressive corneal and retinal axonal loss was identified in patients with MS, especially those with more active disease. CCM may serve as an imaging biomarker of axonal loss in MS.
Collapse
Affiliation(s)
| | - Fatima Al-Shibani
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Gulfidan Bitirgen
- Department of Ophthalmology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Georgios Ponirakis
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Adnan Khan
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Hoda Gad
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Ziyad R. Mahfoud
- Division of Medical Education, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar,Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Heba Altarawneh
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | | | - Karen John
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Dhabia Al-Merekhi
- Division of Research, Weill Cornell Medicine–Qatar of Cornell University, Doha, Qatar
| | - Pooja George
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ali Ulvi Uca
- Department of Neurology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Ozkagnici
- Department of Neurology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Faiza Ibrahim
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Reny Francis
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Dirk Deleu
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Surjith Vattoth
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Own
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | - Naveed Akhtar
- Neuroscience Institute, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
10
|
Toprak M, Altintas O, Bickin H, Efendi H, Yilmaz Tugan B, Yuksel N. In vivo confocal microscopy of corneal nerve fiber damage in early course of multiple sclerosis. Int Ophthalmol 2023; 43:503-509. [PMID: 35945411 DOI: 10.1007/s10792-022-02448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate the corneal nerve fiber morphology in patients with multiple sclerosis (MS) by in vivo corneal confocal microscopy (CCM). METHODS Retinal nerve fiber layer thickness (RNFLT), central macular thickness (CMT), corneal nerve fiber length (CNFL), corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD) and corneal nerve fiber tortuosity (CNFT) were measured. Correlation of corneal nerve findings with duration and clinical severity of MS was calculated. RESULTS CNFL (9.50 ± 0.60 vs. 11.20 ± 0.57 mm/mm2, P = 0.046) and CNBD (57.46 ± 5.04 vs. 77.65 ± 3.41 no/mm2, P = 0.001) were significantly lower with no significant difference in CNFD (21.24 ± 1.20 vs. 23.62 ± 0.95 no/mm2, P = 0.125), CNFT (2.00 ± 0.15 vs. 1.73 ± 0.12, P = 0.180), CMT (269.57 ± 12.53 vs. 271.10 ± 18.84 μm, P = 0.716) or RNFLT (102.82 ± 6.98 vs. 105.33 ± 12.70 μm, P = 0.351) between patients with RRMS compared to controls. There was no significant correlation between CCM parameters with EDSS and duration of disease in MS patients. CONCLUSION The current study demonstrated that a decrease in CNFL, CNFD and CNBD in CCM analysis in the early course of MS.
Collapse
Affiliation(s)
- Muge Toprak
- Ophthalmology Clinic, Gebze Fatih State Hospital, 41400, Kocaeli, Turkey.
| | - Ozgul Altintas
- Department of Ophthalmology, Acibadem Mehmet Ali Aydınlar University, 34398, Istanbul, Turkey
| | - Hande Bickin
- Neurology Clinic, Pasaalani Private Sevgi Hospital, 10100, Balıkesir, Turkey
| | - Husnu Efendi
- Department of Neurology, Kocaeli University, 41100, Kocaeli, Turkey
| | | | - Nursen Yuksel
- Department of Ophthalmology, Kocaeli University, 41100, Kocaeli, Turkey
| |
Collapse
|
11
|
Dericioğlu V, Akkaya Turhan S, Erdem HE, Sevik MO, Erdil E, Sünter G, Ağan K, Toker E. In Vivo Corneal Confocal Microscopy in Multiple Sclerosis: Can it Differentiate Disease Relapse in Multiple Sclerosis? Am J Ophthalmol 2023; 250:138-148. [PMID: 36669610 DOI: 10.1016/j.ajo.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE This study aims to investigate the role of in vivo corneal confocal microscopy (IVCCM) in the detection of corneal inflammatory activity and subbasal nerve alterations in patients with multiple sclerosis (MS) and to further determine whether IVCCM can be used to detect (acute) disease relapse. DESIGN Prospective cross-sectional study, with a subgroup follow-up. METHODS This single-center study included 58 patients with MS (MS-Relapse group [n = 27] and MS-Remission group [n = 31]), and 30 age- and sex-matched healthy control subjects. Patients with a history of optic neuritis or trigeminal symptoms were excluded. Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), and dendritic cell (DC) density were evaluated in all patients with MS and control subjects by IVCCM. Patients in the MS-Relapse group who were in remission for ≥6 months after the MS incident underwent a repeat IVCCM. RESULTS No statistical difference was observed between the MS-Relapse and MS-Remission groups regarding age, sex, MS duration, and the number of relapses (P > .05). Compared with healthy control subjects, all subbasal nerve parameters were significantly lower (CNFD: P < .001, CNFL: P < .001, CNBD: P < .001), and the DC density was significantly higher (P = .023) in patients with MS. However, no significant difference was observed between MS-Relapse and MS-Remission groups in terms of CNFD (mean [SE] difference -2.05 [1.69] fibers/mm2 [95% confidence interval {CI} -1.32 to 5.43]; P < .227), CNFL (mean [SE] difference -1.10 [0.83] mm/mm2 [95% CI -0.56 to 2.75]; P < .190), CNBD (mean [SE] difference -3.91 [2.48] branches/mm2 [95% CI -1.05 to 8.87]; P < .120), and DC density (median [IQR], 59.38 [43.75-85.0] vs 75.0 [31.25-128.75]; P = .596). The repeat IVCCM in relapse patients (n = 16 [59.3%]) showed a significant increase in CNFD (P = .036) and CNBD (P = .018), but no change was observed in CNFL (P = .075) and DC density (P = .469). CONCLUSION Although increased inflammation and neurodegeneration can be demonstrated in patients with MS compared with healthy control subjects, a single time point evaluation of IVCCM does not seem to be sufficient to confirm the occurrence of relapse in patients with MS. However, IVCCM holds promise for demonstrating early neuroregeneration in patients with MS.
Collapse
Affiliation(s)
- Volkan Dericioğlu
- From the Department of Ophthalmology (V.D., S.A.T., H.E.E., M.O.S.), Marmara University School of Medicine, Istanbul, Turkey.
| | - Semra Akkaya Turhan
- From the Department of Ophthalmology (V.D., S.A.T., H.E.E., M.O.S.), Marmara University School of Medicine, Istanbul, Turkey
| | - Halit Eren Erdem
- From the Department of Ophthalmology (V.D., S.A.T., H.E.E., M.O.S.), Marmara University School of Medicine, Istanbul, Turkey
| | - Mehmet Orkun Sevik
- From the Department of Ophthalmology (V.D., S.A.T., H.E.E., M.O.S.), Marmara University School of Medicine, Istanbul, Turkey
| | - Esra Erdil
- and the Department of Neurology (E.E., G.S., K.A.), Marmara University School of Medicine, Istanbul, Turkey
| | - Gülin Sünter
- and the Department of Neurology (E.E., G.S., K.A.), Marmara University School of Medicine, Istanbul, Turkey
| | - Kadriye Ağan
- and the Department of Neurology (E.E., G.S., K.A.), Marmara University School of Medicine, Istanbul, Turkey
| | - Ebru Toker
- and the Department of Ophthalmology and Visual Sciences (E.T.), West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
12
|
Che NN, Jiang QH, Chen S, Chen SY, Zhao ZX, Li X, Ma JJ, Zhang JW, Malik RA, Yang HQ. The severity of corneal nerve loss differentiates motor subtypes in patients with Parkinson's disease. Ther Adv Neurol Disord 2023; 16:17562864231165561. [PMID: 37114067 PMCID: PMC10126700 DOI: 10.1177/17562864231165561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Background Parkinson's disease (PD) is a heterogeneous movement disorder with patients manifesting with either tremor-dominant (TD) or postural instability and gait disturbance (PIGD) motor subtypes. Small nerve fiber damage occurs in patients with PD and may predict motor progression, but it is not known whether it differs between patients with different motor subtypes. Objective The aim of this study was to explore whether there was an association between the extent of corneal nerve loss and different motor subtypes. Methods Patients with PD classified as TD, PIGD, or mixed subtype underwent detailed clinical and neurological evaluation and corneal confocal microscopy (CCM). Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), and corneal nerve fiber length (CNFL) were compared between groups, and the association between corneal nerve fiber loss and motor subtypes was investigated. Results Of the 73 patients studied, 29 (40%) had TD, 34 (46%) had PIGD, and 10 (14%) had a mixed subtype. CNFD (no./mm2, 24.09 ± 4.58 versus 28.66 ± 4.27; p < 0.001), CNBD (no./mm2, 28.22 ± 11.11 versus 37.37 ± 12.76; p = 0.015), and CNFL (mm/mm2, 13.11 ± 2.79 versus 16.17 ± 2.37; p < 0.001) were significantly lower in the PIGD group compared with the TD group. Multivariate logistic regression showed that higher CNFD (OR = 1.265, p = 0.019) and CNFL (OR = 1.7060, p = 0.003) were significantly associated with the TD motor subtype. The receiver operating characteristic (ROC) analysis demonstrated that combined corneal nerve metrics showed excellent discrimination between TD and PIGD, with an area under the curve (AUC) of 0.832. Conclusion Greater corneal nerve loss occurs in patients with PIGD compared with TD, and patients with a higher CNFD or CNFL were more likely to have the TD subtype. CCM may have clinical utility in differentiating different motor subtypes in PD.
Collapse
Affiliation(s)
| | | | - Shuai Chen
- Department of Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Si-Yuan Chen
- Department of Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Zhen-Xiang Zhao
- Department of Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xue Li
- Department of Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jian-Jun Ma
- Department of Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jie-Wen Zhang
- Department of Neurology, Henan Provincial People’s Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar; Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
13
|
Gu Y, Liu X, Yu X, Qin Q, Yu N, Ke W, Wang K, Chen M. Corneal in vivo Confocal Microscopy for Assessment of Non-Neurological Autoimmune Diseases: A Meta-Analysis. Front Med (Lausanne) 2022; 9:809164. [PMID: 35372389 PMCID: PMC8965464 DOI: 10.3389/fmed.2022.809164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aimed to evaluate the features of corneal nerve with in vivo confocal microscopy (IVCM) among patients with non-neurological autoimmune (NNAI) diseases. Methods We systematically searched PubMed, Web of Science, and Cochrane Central Register of Controlled Trials for studies published until May 2021. The weighted mean differences (WMDs) of corneal nerve fiber length (CNFL), corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), tortuosity, reflectivity, and beadings per 100 μm with a 95% CI between NNAI and control group were analyzed using a random-effects model. Results The results showed 37 studies involving collective totals of 1,423 patients and 1,059 healthy controls were ultimately included in this meta-analysis. The pooled results manifested significantly decreased CNFL (WMD: −3.94, 95% CI: −4.77–−3.12), CNFD (WMD: −6.62, 95% CI: −8.4–−4.85), and CNBD (WMD: −9.89, 95% CI: −14–−5.79) in NNAI patients. In addition, the NNAI group showed more tortuous corneal nerve (WMD: 1.19, 95% CI:0.57–1.81). The comparison between NNAI patients and healthy controls in beadings per 100 μm corneal nerve length was inconsistent. No significant difference was found in the corneal nerve fiber reflectivity between NNAI and the control group (WMD: −0.21, 95% CI: −0.65–0.24, P = 0.361). Conclusions The parameters and morphology of corneal nerves observed by IVCM proved to be different in NNAI patients from healthy controls, suggesting that IVCM may be a non-invasive technique for identification and surveillance of NNAI diseases.
Collapse
Affiliation(s)
- Yuxiang Gu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Xin Liu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Xiaoning Yu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Qiyu Qin
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Naiji Yu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Weishaer Ke
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Kaijun Wang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Min Chen
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| |
Collapse
|
14
|
Petropoulos IN, Bitirgen G, Ferdousi M, Kalteniece A, Azmi S, D'Onofrio L, Lim SH, Ponirakis G, Khan A, Gad H, Mohammed I, Mohammadi YE, Malik A, Gosal D, Kobylecki C, Silverdale M, Soran H, Alam U, Malik RA. Corneal Confocal Microscopy to Image Small Nerve Fiber Degeneration: Ophthalmology Meets Neurology. FRONTIERS IN PAIN RESEARCH 2022; 2:725363. [PMID: 35295436 PMCID: PMC8915697 DOI: 10.3389/fpain.2021.725363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain has multiple etiologies, but a major feature is small fiber dysfunction or damage. Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that can image small nerve fibers in the cornea and has been utilized to show small nerve fiber loss in patients with diabetic and other neuropathies. CCM has comparable diagnostic utility to intraepidermal nerve fiber density for diabetic neuropathy, fibromyalgia and amyloid neuropathy and predicts the development of diabetic neuropathy. Moreover, in clinical intervention trials of patients with diabetic and sarcoid neuropathy, corneal nerve regeneration occurs early and precedes an improvement in symptoms and neurophysiology. Corneal nerve fiber loss also occurs and is associated with disease progression in multiple sclerosis, Parkinson's disease and dementia. We conclude that corneal confocal microscopy has good diagnostic and prognostic capability and fulfills the FDA criteria as a surrogate end point for clinical trials in peripheral and central neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gulfidan Bitirgen
- Department of Ophthalmology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom.,Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Sze Hway Lim
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | | | - Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hoda Gad
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ibrahim Mohammed
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Ayesha Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - David Gosal
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher Kobylecki
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Monty Silverdale
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Clinical Sciences Centre, Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital National Health System (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
15
|
Bitirgen G, Akpinar Z, Turk HB, Malik RA. Abnormal Dynamic Pupillometry Relates to Neurologic Disability and Retinal Axonal Loss in Patients With Multiple Sclerosis. Transl Vis Sci Technol 2021; 10:30. [PMID: 34004008 PMCID: PMC8083111 DOI: 10.1167/tvst.10.4.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess alterations in quantitative dynamic pupil responses to light in relation to neurologic disability and retinal axonal loss in patients with multiple sclerosis (MS). Methods Twenty-five patients with relapsing-remitting MS and 25 healthy subjects were included in this cross-sectional study. Pupillary responses were measured with an infrared dynamic pupillometry unit, and peripapillary retinal nerve fiber layer (RNFL) thickness was measured with spectral-domain optical coherence tomography. Neurologic disability was assessed by the Expanded Disability Status Scale (EDSS). Patients with a history of optic neuritis (ON) within 6 months were excluded. Only the right eyes were assessed, except in 11 patients with a history of unilateral ON in whom both eyes were further analyzed to evaluate the effect of previous ON. Results The initial pupil diameter (P = 0.003) and pupil contraction amplitude (P = 0.027) were lower in patients with MS compared with healthy controls. Initial pupil diameter correlated with EDSS score (ρ = −0.458; P = 0.021), and RNFL correlated with contraction latency (ρ = −0.524; P = 0.007). There were no significant differences in any of the pupil parameters between eyes with and without a history of ON, and between the ON and fellow eyes of the 11 patients with previous unilateral ON. Conclusions Dynamic pupillometry reveals significant alterations in pupillary light reflex responses associated with neurologic disability and retinal axonal loss, independent of previous ON. Translational Relevance Dynamic pupillometry is a simple, noninvasive tool that may be useful in detecting autonomic dysfunction in patients with MS.
Collapse
Affiliation(s)
- Gulfidan Bitirgen
- Department of Ophthalmology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Zehra Akpinar
- Department of Neurology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Huseyin B Turk
- Department of Ophthalmology, Gaziantep Dr. Ersin Arslan Education and Research Hospital, Gaziantep, Turkey
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Doha, Qatar.,Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR Clinical Research Facility, Manchester, UK
| |
Collapse
|