1
|
Asrani SG, McGlumphy EJ, Al-Aswad LA, Chaya CJ, Lin S, Musch DC, Pitha I, Robin AL, Wirostko B, Johnson TV. The relationship between intraocular pressure and glaucoma: An evolving concept. Prog Retin Eye Res 2024; 103:101303. [PMID: 39303763 DOI: 10.1016/j.preteyeres.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Intraocular pressure (IOP) is the most important modifiable risk factor for glaucoma and fluctuates considerably within patients over short and long time periods. Our field's understanding of IOP has evolved considerably in recent years, driven by tonometric technologies with increasing accuracy, reproducibility, and temporal resolution that have refined our knowledge regarding the relationship between IOP and glaucoma risk and pathogenesis. The goal of this article is to review the published literature pertinent to the following points: 1) the factors that determine IOP in physiologic and pathologic states; 2) technologies for measuring IOP; 3) scientific and clinical rationale for measuring diverse IOP metrics in patients with glaucoma; 4) the impact and shortcomings of current standard-of-care IOP monitoring approaches; 5) recommendations for approaches to IOP monitoring that could improve patient outcomes; and 6) research questions that must be answered to improve our understanding of how IOP contributes to disease progression. Retrospective and prospective data, including that from landmark clinical trials, document greater IOP fluctuations in glaucomatous than healthy eyes, tendencies for maximal daily IOP to occur outside of office hours, and, in addition to mean and maximal IOP, an association between IOP fluctuation and glaucoma progression that is independent of mean in-office IOP. Ambulatory IOP monitoring, measuring IOP outside of office hours and at different times of day and night, provides clinicians with discrete data that could improve patient outcomes. Eye care clinicians treating glaucoma based on isolated in-office IOP measurements may make treatment decisions without fully capturing the entire IOP profile of an individual. Data linking home blood pressure monitors and home glucose sensors to dramatically improved outcomes for patients with systemic hypertension and diabetes and will be reviewed as they pertain to the question of whether ambulatory tonometry is positioned to do the same for glaucoma management. Prospective randomized controlled studies are warranted to determine whether remote tonometry-based glaucoma management might reduce vision loss and improve patient outcomes.
Collapse
Affiliation(s)
- Sanjay G Asrani
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - Lama A Al-Aswad
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig J Chaya
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Shan Lin
- Glaucoma Center of San Francisco, San Francisco, CA, USA
| | - David C Musch
- Department of Ophthalmology & Visual Sciences and Department of Epidemiology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Ian Pitha
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan L Robin
- Department of Ophthalmology & Visual Sciences and Department of Epidemiology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara Wirostko
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| | - Thomas V Johnson
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Mimura M, Akagi T, Kohmoto R, Fujita Y, Sato Y, Ikeda T. Measurement of vitreous humor pressure in vivo using an optic fiber pressure sensor. Sci Rep 2023; 13:18233. [PMID: 37880357 PMCID: PMC10600124 DOI: 10.1038/s41598-023-45616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
We conducted a study to assess the pressure difference between the aqueous and vitreous humors in rabbit eyes using a direct intraocular pressure (IOP) measurement method. A micro-optic-fiber pressure sensor was utilized for this purpose. Preliminary experiments with enucleated porcine eyes confirmed the sensor's accuracy in measuring both aqueous and vitreous humor pressure. The main study involved six healthy albino rabbits, where the sensor measured the pressure in the anterior chamber (aIOP) and posterior vitreous-cavity (pIOP). These measurements were compared to aIOP values obtained through rebound tonometry. Additionally, pre- and postoperative pressure comparisons were made after performing a vitrectomy. Results revealed a significant disparity between aqueous and vitreous humor pressures. Prior to vitrectomy, pIOP was 22.8 mmHg, over twice as high as aIOP (11.0 mmHg), but decreased to a similar level following the procedure. Comparison between the sensor measurements and rebound tonometry showed agreement in aIOP values. In conclusion, our study demonstrates that vitreous humor pressure is consistently higher than aqueous humor pressure, reaching the upper limit of normal IOP. Furthermore, vitrectomy effectively reduces pIOP, aligning it with aIOP. These findings contribute valuable insights into intraocular pressure dynamics and have implications for clinical interventions targeting ocular pressure regulation.
Collapse
Affiliation(s)
- Masashi Mimura
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan.
- Department of Ophthalmology, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya-Shi, Hyogo , 663-8501, Japan.
- Department of Ophthalmology, Toho University Sakura Medical Center, Sakura-City, Chiba, Japan.
| | - Tadamichi Akagi
- Division of Ophthalmology and Visual Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryosuke Kohmoto
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Yasushi Fujita
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Yohei Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| |
Collapse
|
4
|
Wu KY, Mina M, Carbonneau M, Marchand M, Tran SD. Advancements in Wearable and Implantable Intraocular Pressure Biosensors for Ophthalmology: A Comprehensive Review. MICROMACHINES 2023; 14:1915. [PMID: 37893352 PMCID: PMC10609220 DOI: 10.3390/mi14101915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Glaucoma, marked by its intricate association with intraocular pressure (IOP), stands as a predominant cause of non-reversible vision loss. In this review, the physiological relevance of IOP is detailed, alongside its potential pathological consequences. The review further delves into innovative engineering solutions for IOP monitoring, highlighting the latest advancements in wearable and implantable sensors and their potential in enhancing glaucoma management. These technological innovations are interwoven with clinical practice, underscoring their real-world applications, patient-centered strategies, and the prospects for future development in IOP control. By synthesizing theoretical concepts, technological innovations, and practical clinical insights, this review contributes a cohesive and comprehensive perspective on the IOP biosensor's role in glaucoma, serving as a reference for ophthalmological researchers, clinicians, and professionals.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Mina Mina
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marjorie Carbonneau
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Brusini P, Salvetat ML, Zeppieri M. How to Measure Intraocular Pressure: An Updated Review of Various Tonometers. J Clin Med 2021; 10:3860. [PMID: 34501306 PMCID: PMC8456330 DOI: 10.3390/jcm10173860] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Intraocular pressure (IOP) is an important measurement that needs to be taken during ophthalmic examinations, especially in ocular hypertension subjects, glaucoma patients and in patients with risk factors for developing glaucoma. The gold standard technique in measuring IOP is still Goldmann applanation tonometry (GAT); however, this procedure requires local anesthetics, can be difficult in patients with scarce compliance, surgical patients and children, and is influenced by several corneal parameters. Numerous tonometers have been proposed in the past to address the problems related to GAT. The authors review the various devices currently in use for the measurement of intraocular pressure (IOP), highlighting the main advantages and limits of the various tools. The continuous monitoring of IOP, which is still under evaluation, will be an important step for a more complete and reliable management of patients affected by glaucoma.
Collapse
Affiliation(s)
- Paolo Brusini
- Department of Ophthalmology, Policlinico “Città di Udine”, 33100 Udine, Italy;
| | - Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy;
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
6
|
Gopesh T, Wen JH, Santiago-Dieppa D, Yan B, Scott Pannell J, Khalessi A, Norbash A, Friend J. Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. Sci Robot 2021; 6:6/57/eabf0601. [PMID: 34408094 PMCID: PMC9809155 DOI: 10.1126/scirobotics.abf0601] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/26/2021] [Indexed: 01/05/2023]
Abstract
Catheters used for endovascular navigation in interventional procedures lack dexterity at the distal tip. Neurointerventionists, in particular, encounter challenges in up to 25% of aneurysm cases largely due to the inability to steer and navigate the tip of the microcatheters through tortuous vasculature to access aneurysms. We overcome this problem with submillimeter diameter, hydraulically actuated hyperelastic polymer devices at the distal tip of microcatheters to enable active steerability. Controlled by hand, the devices offer complete 3D orientation of the tip. Using saline as a working fluid, we demonstrate guidewire-free navigation, access, and coil deployment in vivo, offering safety, ease of use, and design flexibility absent in other approaches to endovascular intervention. We demonstrate the ability of our device to navigate through vessels and to deliver embolization coils to the cerebral vessels in a live porcine model. This indicates the potential for microhydraulic soft robotics to solve difficult access and treatment problems in endovascular intervention.
Collapse
Affiliation(s)
- Tilvawala Gopesh
- Department of Mechanical and Aerospace Engineering, University of California San Diego, USA
| | - Jessica H. Wen
- Department of Mechanical and Aerospace Engineering, University of California San Diego, USA
| | | | - Bernard Yan
- Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - J. Scott Pannell
- Department of Neurosurgery, University of California San Diego, USA
| | | | | | - James Friend
- Department of Mechanical and Aerospace Engineering, University of California San Diego, USA,Department of Surgery, University of California San Diego, USA,To whom correspondence should be addressed; , Medically Advanced Devices Laboratory, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|