1
|
Tahmasebi Sarvestani M, Chidlow G, Wood JP, Casson RJ. Effects of slit lamp-delivered retinal laser photobiomodulation in a rat model of choroidal neovascularization. Exp Eye Res 2024; 244:109909. [PMID: 38710357 DOI: 10.1016/j.exer.2024.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Neovascular age-related macular degeneration, also known as exudative or wet age-related macular degeneration, is the leading cause of blindness in the developed world. Photobiomodulation has the potential to target the up-stream hypoxic and pro-inflammatory drivers of choroidal neovascularization. This study investigated whether photobiomodulation attenuates characteristic pathological features of choroidal neovascularization in a rodent model. Experimental choroidal neovascularization was induced in Brown Norway rats with laser photocoagulation. A custom-designed, slit-lamp-mounted, 670 nm laser was used to administer retinal photobiomodulation every 3 days, beginning 6 days prior to choroidal neovascularization induction and continuing until the animals were killed 14 days later. The effect of photobiomodulation on the size of choroidal neovascular membranes was determined using isolectin-B4 immunohistochemistry and spectral domain-optical coherence tomography. Vascular leakage was determined with fluorescein angiography. The effect of treatment on levels of vascular endothelial growth factor expression was quantified with enzyme-linked immunosorbent assay. Treatment with photobiomodulation was associated with choroidal neovascular membranes that were smaller, had less fluorescein leakage, and a diminished presence of inflammatory cells as compared to sham eyes. These effects were not associated with a statistically significant difference in the level of vascular endothelial growth factor when compared to sham eyes. The data shown herein indicate that photobiomodulation attenuates pathological features of choroidal neovascularization in a rodent model by mechanisms that may be independent of vascular endothelial growth factor.
Collapse
Affiliation(s)
| | - Glyn Chidlow
- Ophthalmic Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia
| | - John P Wood
- Ophthalmic Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratory, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
2
|
Zhu M, Liu Y, Fang D, Li M, Fu T, Yao K, Wang P, Sun X, Xiang Y. Safety of repeated low-level red-light therapy for children with myopia. Photodiagnosis Photodyn Ther 2024; 47:104198. [PMID: 38729232 DOI: 10.1016/j.pdpdt.2024.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUD To investigate the safety of repetitive low-level red-light therapy (RLRLT) in children with myopia. METHODS Children with myopia were assigned to the RLRL and control groups. Axial length (AL) and spherical equivalent refraction (SER) were followed up at 3-, 6-, and 12-month. To evaluate the safety of RLRLT, at 6 and 12 months in the RLRL group, multifocal electroretinography (mfERG) and contrast sensitivity were recorded. Furthermore, optical coherence tomography was used to measure the relative reflectance of the ellipsoid zone (rEZR), photoreceptor outer segment (rPOSR), and retinal pigment epithelium (rRPER). RESULTS A total of 108 children completed the trial (55 in the RLRL group and 53 in the control group). After 3, 6, and 12 months, AL was shorter and SER less myopic in the RLRL group than in the control group. Regarding the safety of the RLRLT, the response density and amplitude of the P1 wave of the first ring of the mfERG increased significantly at 6 months (P = 0.001 and P = 0.017, respectively). At 6 and 12 months, contrast sensitivity at the high spatial frequency increased. Moreover, the rEZR increased significantly at 6 months (P = 0.029), the rPOSR increased significantly at 6 and 12 months (both P < 0.001), and the increase in rPOSR was greater with greater AL regression. CONCLUSIONS Based on retinal function and structure follow-up, RLRLT was safe within 12 months. However, rEZR and rPOSR increased, the effects of this phenomenon requires further observation.
Collapse
Affiliation(s)
- Mengxia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Ying Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Dengqin Fang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Mu Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Ting Fu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - KeJun Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Ping Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Kaymak H, Munk MR, Tedford SE, Croissant CL, Tedford CE, Ruckert R, Schwahn H. Non-Invasive Treatment of Early Diabetic Macular Edema by Multiwavelength Photobiomodulation with the Valeda Light Delivery System. Clin Ophthalmol 2023; 17:3549-3559. [PMID: 38026594 PMCID: PMC10676639 DOI: 10.2147/opth.s415883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Diabetes is associated with ocular complications including diabetic macular edema (DME). Current therapies are invasive and include repeated intravitreal injections and laser therapy. Photobiomodulation (PBM) is a treatment (Tx) that utilizes selected wavelengths of light to induce cellular benefits including reduction of inflammation and edema. This single-center, open-label, post-hoc analysis explored the utility of multiwavelength PBM in subjects with DME. Methods Analysis included review of data from patients undergoing standard clinical care with an approved and marketed PBM medical device, the Valeda® Light Delivery System. Subjects with early-stage DME with good vision (Best-corrected visual acuity (BCVA) > 20/25, logMAR > 0.1) were evaluated in clinic and treated with one series of multiwavelength PBM (Tx delivered 3x/week over 3-4 weeks; total of 9 Tx sessions). Clinical, anatomical, and safety parameters were assessed in addition to subjective quality of life. Results A total of 30 eyes (19 subjects) were analyzed. Subjects were predominately male (68.4%) with a mean age of 56 ± 14 years. Reductions in central retinal thickness (CRT), resolution of intraretinal fluid (IRF) and improvement in diabetic retinopathy severity scale scores were observed following PBM treatment in select patients. Baseline BCVA remained stable over the follow-up observation period of 3 months post-PBM. Approximately 64% of patients reported subjective improvements in their ocular condition and decreased influence in everyday life. Detailed OCT evaluations confirmed no safety issues related to phototoxicity up to 16 months. Conclusion Early-stage DME subjects treated with Valeda multiwavelength PBM showed improvements in clinical and anatomical parameters. The Valeda multiwavelength PBM approach demonstrates a favorable safety profile with no signs of phototoxicity following an independent OCT review. PBM therapy may offer an alternative, non-invasive treatment strategy with a unique mechanism and modality for patients with early-stage DME.
Collapse
Affiliation(s)
- Hakan Kaymak
- I.I.O.GbR Breyer Kaymak Klabe, Duesseldorf, Germany
- Experimental Ophthalmology, University Hospital and Medical Faculty of the University of Saarland, Homburg/Saar, Germany
| | - Marion R Munk
- Department of Ophthalmology, Inselspital University Hospital Bern, Bern, Switzerland
- Eyegnos Consulting, Bern, Switzerland
- Augenarzt-Praxisgemeinschaft Gutblick AG, Pfäffikon, Switzerland
| | | | | | | | - Rene Ruckert
- Eyegnos Consulting, Bern, Switzerland
- LumiThera, Inc, Poulsbo, WA, USA
| | | |
Collapse
|
4
|
Luque-Mialdea F, Molina-Seoane V. Retinitis pigmentosa: Significant improvement with photobiomodulation. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2023:S2173-5794(23)00155-X. [PMID: 37813185 DOI: 10.1016/j.oftale.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/11/2023]
Abstract
We describe the case of a 38-year-old patient with retinitis pigmentosa. Diagnosed at the age of 20, she presented a progressive decrease in visual acuity and visual field, until she developed a shotgun barrel campimetry. After starting a photobiomodulation treatment of 9 sessions every other day, the patient reported improvement in visual acuity, night vision and quality of life. Clinical evaluation showed a visual acuity of 10/10 in both eyes and a substantial improvement in visual field.
Collapse
Affiliation(s)
- F Luque-Mialdea
- Unidad de Especialización, CLM Clínica Oftalmológica, Madrid, Spain.
| | - V Molina-Seoane
- Unidad de Especialización, CLM Clínica Oftalmológica, Madrid, Spain
| |
Collapse
|
5
|
Ramezani F, Neshasteh-Riz A, Ghadaksaz A, Fazeli SM, Janzadeh A, Hamblin MR. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med Sci 2021; 37:11-18. [PMID: 33624187 DOI: 10.1007/s10103-021-03277-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Photobiomodulation therapy (PBMT) previously known as low-level laser therapy (LLLT) has been used for over 30 years, to treat neurological diseases. Low-powered lasers are commonly used for clinical applications, although recently LEDs have become popular. Due to the growing application of this type of laser in brain and neural-related diseases, this review focuses on the mechanisms of laser action. The most important points to consider include the photon absorption by intracellular structures; the effect on the oxidative state of cells; and the effect on the expression of proteins involved in oxidative stress, inflammation, pain, and neuronal growth.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, 7622, Hungary
| | - Seyedalireza Moghadas Fazeli
- Occupational Medicine Research Center (OMRC), Iran University of Medical Sciences, Tehran, Iran.,International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|