1
|
Mano F, LoBue S, Tailor P, Olsen TW. Incisional choroidal surgery. Surv Ophthalmol 2024:S0039-6257(24)00096-1. [PMID: 39222800 DOI: 10.1016/j.survophthal.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The choroid is a thin layer of highly vascular uveal tissue enclosed externally by sclera and internally by neurosensory retinal tissue. The choroid is a "middle layer" ocular tissue with anatomically challenging surgical access. The primary functional role of the choroid is to provide rapid, oxygenated, and nutrient-rich blood flow to both the highly metabolic retinal pigment epithelium and outer retina (i.e. photoreceptors) while simultaneously removing waste products. Historically, incisional choroidal surgery (ICS) has involved tumor biopsy or excision, removal of choroidal neovascular complex or autologous choroidal translocations; however, ICS also holds unique potential for novel and innovative approaches to address macular pathology. Using large-animal surgical studies, researchers have explored ICS with the objective of finding safer and more effective techniques to reduce surgical risks such as bleeding, tissue contraction, and scar tissue formation. We explore the relevant anatomy and embryology, existing surgical techniques, discuss the implications for retinal drug delivery, define ICS guiding principles, and offer a rationale for implementation of ICS into a vitreoretinal surgical practice. We also identify other future challenges and anticipate future innovations that will advance ICS.
Collapse
Affiliation(s)
- Fukutaro Mano
- Kindai University, Osaka, Japan; Mayo Clinic, Rochester, MN, USA
| | - Stephen LoBue
- LoBue Laser and Eye Medical Center, Murrieta, CA, USA; Mayo Clinic, Rochester, MN, USA
| | | | - Timothy W Olsen
- Chair Emeritus, Emory University, Atlanta, GA, USA; Mayo Clinic, Rochester, MN, USA; EyeMacular Regeneration, Inc., Rochester, MN, USA; iMacular Regeneration, LLC, Rochester, MN, USA.
| |
Collapse
|
2
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
3
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
4
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Lenin R, Jha KA, Gentry J, Shrestha A, Culp EV, Vaithianathan T, Gangaraju R. Tauroursodeoxycholic Acid Alleviates Endoplasmic Reticulum Stress-Mediated Visual Deficits in Diabetic tie2-TNF Transgenic Mice via TGR5 Signaling. J Ocul Pharmacol Ther 2023; 39:159-174. [PMID: 36791327 PMCID: PMC10081728 DOI: 10.1089/jop.2022.0117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/11/2022] [Indexed: 02/17/2023] Open
Abstract
Purpose: This study evaluated if tauroursodeoxycholic acid (TUDCA) alleviates pro-inflammatory and endoplasmic reticulum (ER) stress-mediated visual deficits in diabetic tie2-TNF transgenic mice via Takeda G protein-coupled receptor 5 (TGR5) receptor signaling. Methods: Adult tie2-TNF transgenic or age-matched C57BL/6J (wildtype, WT) mice were made diabetic and treated subcutaneously with TUDCA. After 4 weeks, visual function, vascular permeability, immunohistology, and molecular analyses were assessed. Human retinal endothelial cells (HRECs) silenced for TGR5, followed by TNF and high glucose (HG) stress-mediated endothelial permeability, and transendothelial migration of activated leukocytes were assessed with TUDCA in vitro. Results: Compared with WT mice, tie2-TNF mice showed a decreased visual function correlated with a decrease in protein kinase C α (PKCα) in rod bipolar cells, and increased vascular permeability was further exacerbated in diabetic-tie2-TNF mice. Conversely, TUDCA alleviated these changes in diabetic mice. An increase in inflammation and ER stress in retina coincided with an increase in TGR5 expression in diabetic tie2-TNF mice that decreased with TUDCA. In vitro, HRECs exposed to TNF+HG demonstrated >2-fold increase in TGR5 expression, a 3-fold increase in leukocyte transmigration with a concomitant increase in permeability. Although TUDCA reversed these effects, HRECs silenced for TGR5 and challenged with TUDCA or TGR5 agonist failed to reverse the TNF+HG induced effects. Conclusions: Our data suggest that TUDCA will serve as an excellent therapeutic agent for diabetic complications addressing both vascular and neurodegenerative changes in the retina. Perturbation of the TGR5 receptor in the retina might play a role in linking retinal ER stress to neurovascular dysfunction in diabetic retinopathy.
Collapse
Affiliation(s)
- Raji Lenin
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kumar Abhiram Jha
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jordy Gentry
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Abhishek Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, and The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Erielle V. Culp
- Department of Pharmacology, Addiction Science, and Toxicology, and The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thirumalini Vaithianathan
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Pharmacology, Addiction Science, and Toxicology, and The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Patil MA, Kompella UB. Noninvasive monitoring of suprachoroidal, subretinal, and intravitreal implants using confocal scanning laser ophthalmoscope (cSLO) and optical coherence tomography (OCT). Int J Pharm 2021; 606:120887. [PMID: 34271155 PMCID: PMC8429194 DOI: 10.1016/j.ijpharm.2021.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
To address the need for noninvasive monitoring of injectable preformed drug delivery implants in the eye, we developed noninvasive methods to monitor such implants in different locations within the eye. Cylindrical polymeric poly(lactide-co-glycolide) or metal implants were injected into isolated bovine eyes at suprachoroidal, subretinal, and intravitreal locations and imaged noninvasively using the cSLO and OCT modes of a Heidelberg Spectralis HRA + OCT instrument after adjusting for the corneal curvature. Length and diameter of implants were obtained using cSLO images for all three locations, and the volume was calculated. Additionally, implant volume for suprachoroidal and subretinal location was estimated by integrating the cross-sectional bleb area over the implant length in multiple OCT images or using the maximum thickness of the implant based on thickness map along with length in cSLO image. Simultaneous cSLO and OCT imaging identified implants in different regions of the eye. Image-based measurements of implant dimensions mostly correlated well with the values prior to injection using blade micrometer. The accuracy (82-112%) and precision (1-19%) for noninvasive measurement of length was better than the diameter (accuracy 69-130%; precision 3-38%) using cSLO image for both types of implants. The accuracy for the measurement of volume of both types of implants from all three intraocular locations was better with cSLO imaging (42-152%) compared to those obtained using OCT cross-sectional bleb area integration (117-556%) or cSLO and thickness map (32-279%) methods. Suprachoroidal, subretinal, and intravitreal implants can be monitored for length, diameter, and volume using cSLO and OCT imaging. Such measurements may be useful in noninvasively monitoring implant degradation and drug release in the eye.
Collapse
Affiliation(s)
- Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
7
|
Xia C, Zhang X, Zhang Y, Li J, Xing H. Ammonia exposure causes the disruption of the solute carrier family gene network in pigs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111870. [PMID: 33440271 DOI: 10.1016/j.ecoenv.2020.111870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Ammonia is the main harmful gas in livestock houses. However, the toxic mechanism of ammonia is still unclear. Therefore, we examined the effects of ammonia exposure on different tissues of fattening pigs by histological analysis and transcriptome techniques in this study. The results showed that there were varying degrees of pathological changes in liver, kidney, hypothalamus, jejunum, lungs, spleen, heart and trachea of fattening pigs under ammonia exposure. Notably, the extent of damage in liver, kidney, jejunum, lungs, hypothalamus and trachea was more severe than that in heart and spleen. Transcriptome results showed that ammonia exposure caused changes in 349, 335, 340, 229, 120, 578, 407 and 115 differentially expressed genes in liver, kidney, spleen, lung, trachea, hypothalamus, jejunum and heart, respectively. Interestingly, the changes in solute vector (SLC) family genes were found in all 8 tissues, and the verified gene results (SLC11A1, SLC17A7, SLC17A6, SLC6A4, SLC22A7, SLC25A3, SLC28A3, SLC7A2, SLC6A6, SLC38A5, SLC22A12, SLC34A1, SLC26A1, SLC26A6, SLC27A5, SLC22A8 and SLC44A4) were consistent with qRT-PCR results. In conclusion, ammonia exposure can cause pathological changes in many tissues and organs of fattening pigs and changes in the SCL family gene network. Importantly, the SCL family is involved in the toxic mechanism of ammonia. Our findings will provide a new insight for better assessing the mechanism of ammonia toxicity.
Collapse
Affiliation(s)
- Chunli Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xinxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Heilongjiang Agricultural and Rural Department, 4-1 Wenfu Street, Harbin 150060, People's Republic of China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
8
|
Wan CR, Muya L, Kansara V, Ciulla TA. Suprachoroidal Delivery of Small Molecules, Nanoparticles, Gene and Cell Therapies for Ocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13020288. [PMID: 33671815 PMCID: PMC7926337 DOI: 10.3390/pharmaceutics13020288] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Suprachoroidal drug delivery technology has advanced rapidly and emerged as a promising administration route for a variety of therapeutic candidates, in order to target multiple ocular diseases, ranging from neovascular age-related macular degeneration to choroidal melanoma. This review summarizes the latest preclinical and clinical progress in suprachoroidal delivery of therapeutic agents, including small molecule suspensions, polymeric entrapped small molecules, gene therapy (viral and nonviral nanoparticles), viral nanoparticle conjugates (VNCs), and cell therapy. Formulation customization is critical in achieving favorable pharmacokinetics, and sustained drug release profiles have been repeatedly observed for multiple small molecule suspensions and polymeric formulations. Novel therapeutic agents such as viral and nonviral gene therapy, as well as VNCs, have demonstrated promise in animal studies. Several of these suprachoroidally-administered therapies have been assessed in clinical trials, including small molecule suspensions of triamcinolone acetonide and axitinib, viral vector RGX-314 for gene therapy, and VNC AU-011. With continued drug delivery research and optimization, coupled with customized drug formulations, suprachoroidal drug delivery may address large unmet therapeutic needs in ophthalmology, targeting affected tissues with novel therapies for efficacy benefits, compartmentalizing therapies away from unaffected tissues for safety benefits, and achieving durability to relieve the treatment burden noted with current agents.
Collapse
|