1
|
Gan Z, van der Stelt I, Li W, Hu L, Song J, Grefte S, van de Westerlo E, Zhang D, van Schothorst EM, Claahsen-van der Grinten HL, Teerds KJ, Adjobo-Hermans MJW, Keijer J, Koopman WJH. Mitochondrial Nicotinamide Nucleotide Transhydrogenase: Role in Energy Metabolism, Redox Homeostasis, and Cancer. Antioxid Redox Signal 2024; 41:927-956. [PMID: 39585234 DOI: 10.1089/ars.2024.0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Significance: Dimeric nicotinamide nucleotide transhydrogenase (NNT) is embedded in the mitochondrial inner membrane and couples the conversion of NADP+/NADH into NADPH/NAD+ to mitochondrial matrix proton influx. NNT was implied in various cancers, but its physiological role and regulation still remain incompletely understood. Recent Advances: NNT function was analyzed by studying: (1) NNT gene mutations in human (adrenal) glucocorticoid deficiency 4 (GCCD4), (2) Nnt gene mutation in C57BL/6J mice, and (3) the effect of NNT knockdown/overexpression in (cancer) cells. In these three models, altered NNT function induced both common and differential aberrations. Critical Issues: Information on NNT protein expression in GCCD4 patients is still scarce. Moreover, NNT expression levels are tissue-specific in humans and mice and the functional consequences of NNT deficiency strongly depend on experimental conditions. In addition, data from intact cells and isolated mitochondria are often unsuited for direct comparison. This prevents a proper understanding of NNT-linked (patho)physiology in GCCD4 patients, C57BL/6J mice, and cancer (cell) models, which complicates translational comparison. Future Directions: Development of mice with conditional NNT deletion, cell-reprogramming-based adrenal (organoid) models harboring specific NNT mutations, and/or NNT-specific chemical inhibitors/activators would be useful. Moreover, live-cell analysis of NNT substrate levels and mitochondrial/cellular functioning with fluorescent reporter molecules might provide novel insights into the conditions under which NNT is active and how this activity links to other metabolic and signaling pathways. This would also allow a better dissection of local signaling and/or compartment-specific (i.e., mitochondrial matrix, cytosol, nucleus) effects of NNT (dys)function in a cellular context. Antioxid. Redox Signal. 41, 927-956.
Collapse
Affiliation(s)
- Zhuohui Gan
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Weiwei Li
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Liangyu Hu
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Deli Zhang
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Katja J Teerds
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
3
|
Timmermans S, Vandewalle J, Libert C. Mousepost 2.0, a major expansion of the resource. Nucleic Acids Res 2023; 51:1652-1661. [PMID: 36762471 PMCID: PMC9976886 DOI: 10.1093/nar/gkad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
The Mousepost 1.0 online search tool, launched in 2017, allowed to search for variations in all protein-coding gene sequences of 36 sequenced mouse inbred strains, compared to the reference strain C57BL/6J, which could be linked to strain-specific phenotypes and modifier effects. Because recently these genome sequences have been significantly updated and sequences of 16 extra strains added by the Mouse Genomes Project, a profound update, correction and expansion of the Mousepost 1.0 database has been performed and is reported here. Moreover, we have added a new class of protein disturbing sequence polymorphisms (besides stop codon losses, stop codon gains, small insertions and deletions, and missense mutations), namely start codon mutations. The current version, Mousepost 2.0 (https://mousepost.be), therefore is a significantly updated and invaluable tool available to the community and is described here and foreseen by multiple examples.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Kühn R. Genome engineering in rodents - status quo and perspectives. Lab Anim 2021; 56:83-87. [PMID: 34674587 DOI: 10.1177/00236772211051842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The introduction of the CRISPR-Cas9 system in 2013 has revolutionized experimental genetics in mice and rats. This commentary gives an overview on the use of CRISPR either for gene editing in the germline or for editing and beyond editing in somatic cells. Future perspectives are opened by emerging CRISPR technologies that could enable genome engineering at larger scale.
Collapse
Affiliation(s)
- Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Germany
| |
Collapse
|
5
|
Timmermans S, Libert C. Ratpost: a searchable database of protein-inactivating sequence variations in 40 sequenced rat-inbred strains. Mamm Genome 2021; 32:1-11. [PMID: 33481094 DOI: 10.1007/s00335-020-09853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Rat-inbred strains are essential as scientific tools. We have analyzed the publicly available genome sequences of 40 rat-inbred strains and provide an overview of sequence variations leading to amino acid changes in protein-coding genes, premature STOP codons or loss of STOP codons, and short in-frame insertions and deletions of all protein-coding genes across all these inbred lines. We provide an overview of the predicted impact on protein function of all these affected proteins in the database, by comparing their sequence with the sequences of the rat reference strain BN/SsNHsdMcwi. We also investigate the flaws of the protein-coding sequences of this reference strain itself, by comparing them with a consensus genome. These data can be retrieved via a searchable website (Ratpost.be) and allow a global, better interpretation of genetic background effects and a source of naturally defective alleles in these 40 sequenced classical and high-priority rat-inbred strains.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB-UGent Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
|
7
|
Dogar I, Dixon S, Gill R, Young A, Mallay S, Oldford C, Mailloux RJ. C57BL/6J mice upregulate catalase to maintain the hydrogen peroxide buffering capacity of liver mitochondria. Free Radic Biol Med 2020; 146:59-69. [PMID: 31639438 DOI: 10.1016/j.freeradbiomed.2019.10.409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/22/2022]
Abstract
Here, we demonstrate that the upregulation of catalase is required to compensate for the loss of nicotinamide nucleotide transhydrogenase (NNT) to maintain hydrogen peroxide (H2O2) steady-state levels in C57BL/6J liver mitochondria. Our investigations using the closely related mouse strains C57BL/6NJ (6NJ; +NNT) and C57BL/6J (6J; -NNT) revealed that NNT is required for the provision of NADPH and that the upregulation of isocitrate dehydrogenase-2 (IDH2) activity is not enough to compensate for the absence of NNT, which is consistent with previous observations. Intriguingly, despite the absence of NNT, 6J mitochondria had rates of H2O2 production (58.56 ± 3.79 pmol mg-1 min-1) that were similar to samples collected from 6NJ mice (72.75 ± 14.26 pmol mg-1 min-1) when pyruvate served as the substrate. However, 6NJ mitochondria energized with succinate produced significantly less H2O2 (59.95 ± 2.13 pmol mg-1 min-1) when compared to samples from 6J mice (116.39 ± 20.74 pmol mg-1 min-1), an effect that was attributed to the presence of NNT. Further investigations into the H2O2 eliminating capacities of these mitochondria led to the novel observation that 6J mitochondria compensate for the loss of NNT by upregulating catalase. Indeed, 6NJ and 6J mitochondria energized with pyruvate or succinate displayed similar rates for H2O2 elimination, quenching ~84% and ~86% of the H2O2, respectively, in the surrounding medium within 30 s. However, inclusion of palmitoyl-CoA, an NNT inhibitor, significantly limited H2O2 degradation by 6NJ mitochondria only (~55% of H2O2 eliminated in 30 s). Liver mitochondria from 6J mice treated with palmitoyl-CoA still cleared ~80% of the H2O2 from the surrounding environment. Inhibition of catalase with triazole compromised the capacity of 6J mitochondria to maintain H2O2 steady-state levels. By contrast, disabling NADPH-dependent antioxidant systems had a limited effect on the H2O2 clearing capacity of 6J mitochondria. Liver mitochondria collected from 6NJ mice, on the other hand, were more reliant on the GSH and TRX systems to clear exogenously added H2O2. However, catalase still played an integral in eliminating H2O2 in 6NJ liver mitochondria. Immunoblot analyses demonstrated that catalase protein levels were ~7.7-fold higher in 6J mitochondria. Collectively, our findings demonstrate for the first time that 6J liver mitochondria compensate for the loss of NNT by increasing catalase levels for the maintenance of H2O2 steady-state levels. In general, our observations reveal that catalase is an integral arm of the antioxidant response in liver mitochondria.
Collapse
Affiliation(s)
- Ibrahim Dogar
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Sarah Dixon
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Robert Gill
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Adrian Young
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Sarah Mallay
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Catherine Oldford
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada; The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
8
|
Timmermans S, Libert C. Easy Access to and Applications of the Sequences of All Protein-Coding Genes of All Sequenced Mouse Strains. Trends Genet 2018; 34:899-902. [PMID: 30243593 DOI: 10.1016/j.tig.2018.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
An easily accessible and searchable overview of all protein sequences in the 36 genome-sequenced mouse strains, compared to those in the reference strain C57BL/6J, is now available, as well as an overview of the aberrant proteins in this reference strain. We provide an insight into the advantages of using these databases.
Collapse
Affiliation(s)
- Steven Timmermans
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|