1
|
Jablonowski CM, Quarni W, Singh S, Tan H, Bostanthirige DH, Jin H, Fang J, Chang TC, Finkelstein D, Cho JH, Hu D, Pagala V, Sakurada SM, Pruett-Miller SM, Wang R, Murphy A, Freeman K, Peng J, Davidoff AM, Wu G, Yang J. Metabolic reprogramming of cancer cells by JMJD6-mediated pre-mRNA splicing associated with therapeutic response to splicing inhibitor. eLife 2024; 12:RP90993. [PMID: 38488852 PMCID: PMC10942784 DOI: 10.7554/elife.90993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.
Collapse
Affiliation(s)
| | - Waise Quarni
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Shivendra Singh
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | | | - Hongjian Jin
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Jie Fang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - David Finkelstein
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | - Dongli Hu
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St Jude Children's Research HospitalMemphisUnited States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St Jude Children's Research HospitalMemphisUnited States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s HospitalColumbusUnited States
| | - Andrew Murphy
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Kevin Freeman
- Genetics, Genomics & Informatics, The University of Tennessee Health Science Center (UTHSC)MemphisUnited States
| | - Junmin Peng
- Department of Structural Biology, St Jude Children’s Research HospitalMemphisUnited States
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Jun Yang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
- College of Graduate Health Sciences, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
2
|
Mlakar V, Dupanloup I, Gonzales F, Papangelopoulou D, Ansari M, Gumy-Pause F. 17q Gain in Neuroblastoma: A Review of Clinical and Biological Implications. Cancers (Basel) 2024; 16:338. [PMID: 38254827 PMCID: PMC10814316 DOI: 10.3390/cancers16020338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent extracranial solid childhood tumor. Despite advances in the understanding and treatment of this disease, the prognosis in cases of high-risk NB is still poor. 17q gain has been shown to be the most frequent genomic alteration in NB. However, the significance of this remains unclear because of its high frequency and association with other genetic modifications, particularly segmental chromosomal aberrations, 1p and 11q deletions, and MYCN amplification, all of which are also associated with a poor clinical prognosis. This work reviewed the evidence on the clinical and biological significance of 17q gain. It strongly supports the significance of 17q gain in the development of NB and its importance as a clinically relevant marker. However, it is crucial to distinguish between whole and partial chromosome 17q gains. The most important breakpoints appear to be at 17q12 and 17q21. The former distinguishes between whole and partial chromosome 17q gain; the latter is a site of IGF2BP1 and NME1 genes that appear to be the main oncogenes responsible for the functional effects of 17q gain.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
| | - Isabelle Dupanloup
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Fanny Gonzales
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Danai Papangelopoulou
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Jablonowski C, Quarni W, Singh S, Tan H, Bostanthirige DH, Jin H, Fang J, Chang TC, Finkelstein D, Cho JH, Hu D, Pagala V, Sakurada SM, Pruett-Miller SM, Wang R, Murphy A, Freeman K, Peng J, Davidoff AM, Wu G, Yang J. Metabolic reprogramming of cancer cells by JMJD6-mediated pre-mRNA splicing is associated with therapeutic response to splicing inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546606. [PMID: 37425900 PMCID: PMC10327027 DOI: 10.1101/2023.06.26.546606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that Jumonji Domain Containing 6, Arginine Demethylase and Lysine Hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven neuroblastoma. JMJD6 cooperates with MYC in cellular transformation by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a "molecular glue" that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.
Collapse
|
4
|
Ahmed S, Alam W, Aschner M, Filosa R, Cheang WS, Jeandet P, Saso L, Khan H. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers (Basel) 2023; 15:cancers15092515. [PMID: 37173981 PMCID: PMC10177606 DOI: 10.3390/cancers15092515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroblastoma is the most prevalent extracranial solid tumor in pediatric patients, originating from sympathetic nervous system cells. Metastasis can be observed in approximately 70% of individuals after diagnosis, and the prognosis is poor. The current care methods used, which include surgical removal as well as radio and chemotherapy, are largely unsuccessful, with high mortality and relapse rates. Therefore, attempts have been made to incorporate natural compounds as new alternative treatments. Marine cyanobacteria are a key source of physiologically active metabolites, which have recently received attention owing to their anticancer potential. This review addresses cyanobacterial peptides' anticancer efficacy against neuroblastoma. Numerous prospective studies have been carried out with marine peptides for pharmaceutical development including in research for anticancer potential. Marine peptides possess several advantages over proteins or antibodies, including small size, simple manufacturing, cell membrane crossing capabilities, minimal drug-drug interactions, minimal changes in blood-brain barrier (BBB) integrity, selective targeting, chemical and biological diversities, and effects on liver and kidney functions. We discussed the significance of cyanobacterial peptides in generating cytotoxic effects and their potential to prevent cancer cell proliferation via apoptosis, the activation of caspases, cell cycle arrest, sodium channel blocking, autophagy, and anti-metastasis behavior.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer, 209 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Philippe Jeandet
- Faculty of Sciences, RIBP-USC INRAe 1488, University of Reims, 51100 Reims, France
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00185 Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
5
|
Oyang L, Li J, Jiang X, Lin J, Xia L, Yang L, Tan S, Wu N, Han Y, Yang Y, Luo X, Li J, Liao Q, Shi Y, Zhou Y. The function of prohibitins in mitochondria and the clinical potentials. Cancer Cell Int 2022; 22:343. [DOI: 10.1186/s12935-022-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractProhibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
Collapse
|
6
|
Schneider MF, Müller V, Müller SA, Lichtenthaler SF, Becker PB, Scheuermann JC. LncRNA RUS shapes the gene expression program towards neurogenesis. Life Sci Alliance 2022; 5:5/10/e202201504. [PMID: 35688487 PMCID: PMC9187872 DOI: 10.26508/lsa.202201504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
The chromatin-associated lncRNA RUS binds in the vicinity to neural differentiation-associated genes and regulates them in a context-dependent manner to enable proper neuron development. The evolution of brain complexity correlates with an increased expression of long, noncoding (lnc) RNAs in neural tissues. Although prominent examples illustrate the potential of lncRNAs to scaffold and target epigenetic regulators to chromatin loci, only few cases have been described to function during brain development. We present a first functional characterization of the lncRNA LINC01322, which we term RUS for “RNA upstream of Slitrk3.” The RUS gene is well conserved in mammals by sequence and synteny next to the neurodevelopmental gene Slitrk3. RUS is exclusively expressed in neural cells and its expression increases during neuronal differentiation of mouse embryonic cortical neural stem cells. Depletion of RUS locks neuronal precursors in an intermediate state towards neuronal differentiation resulting in arrested cell cycle and increased apoptosis. RUS associates with chromatin in the vicinity of genes involved in neurogenesis, most of which change their expression upon RUS depletion. The identification of a range of epigenetic regulators as specific RUS interactors suggests that the lncRNA may mediate gene activation and repression in a highly context-dependent manner.
Collapse
Affiliation(s)
- Marius F Schneider
- Division of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians-University, Munich, Germany.,Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veronika Müller
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan A Müller
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich and Neuroproteomics Unit, Technical University, Munich, Germany
| | - Stefan F Lichtenthaler
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich and Neuroproteomics Unit, Technical University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter B Becker
- Division of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Johanna C Scheuermann
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Therapeutic targeting of ATR in alveolar rhabdomyosarcoma. Nat Commun 2022; 13:4297. [PMID: 35879366 PMCID: PMC9314382 DOI: 10.1038/s41467-022-32023-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS.
Collapse
|
8
|
Ciaccio R, De Rosa P, Aloisi S, Viggiano M, Cimadom L, Zadran SK, Perini G, Milazzo G. Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs. Int J Mol Sci 2021; 22:12883. [PMID: 34884690 PMCID: PMC8657550 DOI: 10.3390/ijms222312883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on a small set of key master transcriptional regulators as the convergence point of multiple signalling pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive regulatory networks of this pathology. Furthermore, we underline the significance of multi-target therapies against these hallmarks, showing how novel approaches, together with chemotherapy, surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of tumorigenic pathways through combinations of different treatments.
Collapse
|
9
|
Huang X, Liu J, Ma Q. Prohibitin participates in the HIRA complex to promote cell metastasis in breast cancer cell lines. FEBS Open Bio 2020; 10:2182-2190. [PMID: 32865342 PMCID: PMC7530387 DOI: 10.1002/2211-5463.12966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
Prohibitin (PHB) is a highly conserved, ubiquitously expressed, multifunctional protein with a well‐characterized function as a chaperone‐stabilizing mitochondrial proteins. Recently it was reported that nuclear PHB participates in HIRA chaperone complexes and regulates downstream gene expression via cell cycle independent deposition of H3.3 into DNA. However, the role of PHB in cancer progression remains controversial with conflicting reports in the literature, perhaps due to its cell type‐dependent subcellular localization. Here, we report that the increased expression of nuclear PHB is positively correlated with metastasis of breast cancer cell lines. We showed PHB participates in the HIRA complex by interacting with HIRA through the linker region of the PHB domain and stabilizes all components of the HIRA complex in breast cancer. Overexpression of nuclear PHB resulted in a higher enrichment of histone H3.3 deposited by the HIRA complex at the promoters of mesenchymal markers. This coincided with an increased gene expression level of these markers, and induced EMT in breast cancer. Overall, these molecular and structural mechanisms suggest that nuclear PHB could hold promise as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Department of Oncology and Hematology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), China
| | - Jinji Liu
- Department of Oncology and Hematology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), China
| | - Qinghui Ma
- Department of Oncology and Hematology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), China
| |
Collapse
|
10
|
Wang D, Tabti R, Elderwish S, Abou-Hamdan H, Djehal A, Yu P, Yurugi H, Rajalingam K, Nebigil CG, Désaubry L. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell Mol Life Sci 2020; 77:3525-3546. [PMID: 32062751 PMCID: PMC11104971 DOI: 10.1007/s00018-020-03475-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.
Collapse
Affiliation(s)
- Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Redouane Tabti
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Sabria Elderwish
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Hussein Abou-Hamdan
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Amel Djehal
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
- Superior National School Biotechnology Taoufik Khaznadar, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Peng Yu
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Canan G Nebigil
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France.
| |
Collapse
|
11
|
Guo WW, Chen LH, Yin W, Mo LX. Aberrant Expression of Prohibitin Is Related to Prognosis of Nasal Extranodal Natural Killer/T Cell Lymphoma, Nasal Type. Oncol Res Treat 2020; 43:491-497. [PMID: 32756049 DOI: 10.1159/000509094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Nasal extranodal natural killer (NK)/T cell lymphoma, nasal type (ENKTCL) is a high-grade Epstein-Barr virus (EBV)-associated malignancy with poor outcomes. There are few biomarkers for the accurate diagnosis and prognostic prediction of the disease. The aim of this study was to investigate the clinicopathological significance of prohibitin (PHB) expression in nasal ENKTCL. METHODS The expression level of PHB was detected via immunohistochemical staining in 49 nasal ENKTCL tissues and age- and sex-matched controls of 30 nasal mucosa-reactive lymphoid hyperplasia (NRLH) tissues. The correlations between the PHB expression and clinicopathological features of patients with nasal ENKTCL were evaluated. RESULTS The results indicated a significantly decreased expression of PHB in nasal ENKTCL tissues compared with in NRLH tissues. Low-level PHB expression was significantly associated with younger age and fever (p = 0.008 and 0.018, respectively). The Kaplan-Meier analysis showed that the cytoplasm expression level of PHB in nasal ENKTCL was inversely related to overall survival (p = 0.046). CONCLUSIONS PHB may be a potential diagnostic marker and prognostic predictor of nasal ENKTCL.
Collapse
Affiliation(s)
- Wen Wen Guo
- Department of Pathology, People's Hospital of Guangxi Province, Nanning, China
| | - Ling Hui Chen
- Department of Pathology, People's Hospital of Guangxi Province, Nanning, China
| | - Wu Yin
- Department of Pathology, People's Hospital of Guangxi Province, Nanning, China
| | - Lan Xiang Mo
- Department of Pathology, People's Hospital of Guangxi Province, Nanning, China,
| |
Collapse
|
12
|
Zhang L, Tian W, Zhou B. Polymorphisms in Neuronal Growth Regulator 1 and Otoancorin Alternate the Susceptibility to Lung Cancer in Chinese Nonsmoking Females. DNA Cell Biol 2020; 39:1657-1663. [PMID: 32552051 DOI: 10.1089/dna.2020.5654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell adhesion molecules (CAMs) play crucial roles in the genesis and progress of tumor. We investigated the effects of single nucleotide polymorphisms (SNPs) of CAMs, neuronal growth regulator 1 (NEGR1), and Otoancorin (OTOA) on lung cancer susceptibility in Chinese nonsmoking females. Logistic regression and Cox regression analyses were conducted to investigate the effects of SNPs and environmental factors. For rs3102911, genotype TT carriers decreased the risk of lung cancer with an odds ratio (OR) of 0.635. AA genotypes of rs741718 increased the risk of lung cancer with an OR of 3.527. In stratified analysis, genotype AA carriers of rs741718 had a high susceptibility to lung adenocarcinoma compared with GG and AG genotypes. Analyses of association between SNPs and clinical characteristics revealed that rs3102911 as a protective factor and rs741718 as a risk factor influenced the lung cancer occurrence and progression in nonsmoking females.
Collapse
Affiliation(s)
- Ludan Zhang
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Clinical Medicine, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Wen Tian
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Fang CH, Lin YT, Liang CM, Liang SM. A novel c-Kit/phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3-PBX1 and β-catenin-ABCG2 signaling. J Biomed Sci 2020; 27:42. [PMID: 32169072 PMCID: PMC7071647 DOI: 10.1186/s12929-020-00638-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Background The underlying mechanism involved in ovarian cancer stemness and chemoresistance remains largely unknown. Here, we explored whether the regulation of c-Kit and plasma membrane prohibitin (PHB) affects ovarian cancer stemness and chemotherapy resistance. Methods Mass spectrum analysis and an in vitro kinase assay were conducted to examine the phosphorylation of PHB at tyrosine 259 by c-Kit. The in vitro effects of c-Kit on membrane raft-PHB in ovarian cancer were determined using tissue microarray (TMA)-based immunofluorescence, western blotting, immunoprecipitation, colony and spheroid formation, cell migration and cell viability assays. In vivo tumor initiation and carboplatin treatment were conducted in nude mice. Results We found that c-Kit and PHB colocalized in the raft domain and were positively correlated in human ovarian serous carcinoma. c-Kit interacted with PHB and facilitated the phosphorylation of PHB at tyrosine 259 (phospho-PHBY259) in the membrane raft to enhance ovarian cancer cell motility. The generation of SKOV3GL-G4, a metastatic phenotype of SKOV3 green fluorescent protein and luciferase (GL) ovarian cancer cells, in xenograft murine ascites showed a correlation between metastatic potential and stem cell characteristics, as indicated by the expression of c-Kit, Notch3, Oct4, Nanog and SOX2. Further study revealed that after activation by c-Kit, raft-phospho-PHBY259 interacted with Notch3 to stabilize Notch3 and increase the downstream target PBX1. Downregulation of raft-phospho-PHBY259 increased the protein degradation of Notch3 through a lysosomal pathway and inhibited the β-catenin—ABCG2 signaling pathway. Moreover, raft-phospho-PHBY259 played an important role in ovarian cancer stemness and tumorigenicity as well as resistance to platinum drug treatment in vitro and in vivo. Conclusions These findings thus reveal a hitherto unreported interrelationship between c-Kit and PHB as well as the effects of raft-phospho-PHBY259 on ovarian cancer stemness and tumorigenicity mediated by the Notch3 and β-catenin signaling pathways. Targeting the c-Kit/raft-phospho-PHBY259 axis may provide a new therapeutic strategy for treating patients with ovarian cancer.
Collapse
Affiliation(s)
- Chia-Hsun Fang
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, 4F, No. 81, Chang-Xing St, Taipei, 10672, Taiwan
| | - Yi-Te Lin
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan
| | - Chi-Ming Liang
- Genomics Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan
| | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Rd, Sec. 2, Taipei, 11529, Taiwan. .,Institute of Biotechnology, National Taiwan University, 4F, No. 81, Chang-Xing St, Taipei, 10672, Taiwan.
| |
Collapse
|
14
|
Rybinski B, Wolinsky T, Brohl A, Moerdler S, Reed DR, Ewart M, Weiser D. Multifocal primary neuroblastoma tumor heterogeneity in siblings with co-occurring PHOX2B and NF1 genetic aberrations. Genes Chromosomes Cancer 2019; 59:119-124. [PMID: 31515834 DOI: 10.1002/gcc.22809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/14/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, can present in multiple primary sites, but the extent of genetic heterogeneity among tumor foci, as well as the presence or absence of common oncogenic drivers, remains unknown. Although PHOX2B genetic aberrations can cause familial neuroblastoma, they demonstrate incomplete penetrance with respect to neuroblastoma pathogenesis, suggesting that additional undescribed oncogenic drivers are necessary for tumor development. We performed comprehensive molecular characterization of neuroblastoma tumors from two siblings affected by familial multifocal neuroblastoma, including whole exome sequencing and single-nucleotide polymorphism (SNP) arrays of tumor and matched blood samples. Data were processed and analyzed using established bioinformatics algorithms to evaluate for germline and somatic mutations and copy number variations (CNVs). We confirmed the presence of a PHOX2B deletion and NF1 mutation across all tumor samples and the germline genome. Matched tumor-blood whole exome sequencing also identified 365 genes that contained nonsilent coding mutations across all tumor samples, with no recurrent mutations across all tumors. SNP arrays also showed significant heterogeneity with respect to CNVs. The only common CNV across all tumors was 17q gain, with differing chromosomal coordinates across samples but a common region of overlap distal to 17q21.31, suggesting this adverse prognostic biomarker may offer insight about additional drivers for multifocal neuroblastoma in patients with germline PHOX2B or NF1 aberrations. Molecular characterization of all tumors from patients with multifocal primary neuroblastoma has potential to yield novel insights on neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- Brad Rybinski
- Albert Einstein College of Medicine, New York, New York
| | | | - Andrew Brohl
- H. Lee Moffitt Cancer Center & Research Institute, Florida
| | - Scott Moerdler
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Jersey
| | - Damon R Reed
- H. Lee Moffitt Cancer Center & Research Institute, Florida
| | | | - Daniel Weiser
- Department of Pediatric & Genetics, Albert Einstein College of Medicine, New York, New York.,Division of Pediatric Hematology, Oncology, and Marrow & Blood Cell Transplantation, Children's Hospital at Montefiore, New York, New York
| |
Collapse
|
15
|
Ortiz MV, Ahmed S, Burns M, Henssen AG, Hollmann TJ, MacArthur I, Gunasekera S, Gaewsky L, Bradwin G, Ryan J, Letai A, He Y, Naranjo A, Chi YY, LaQuaglia M, Heaton T, Cifani P, Dome JS, Gadd S, Perlman E, Mullen E, Steen H, Kentsis A. Prohibitin is a prognostic marker and therapeutic target to block chemotherapy resistance in Wilms' tumor. JCI Insight 2019; 4:127098. [PMID: 31391345 DOI: 10.1172/jci.insight.127098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Wilms' tumor is the most common type of childhood kidney cancer. To improve risk stratification and identify novel therapeutic targets for patients with Wilms' tumor, we used high-resolution mass spectrometry proteomics to identify urine tumor markers associated with Wilms' tumor relapse. We determined the urine proteomes at diagnosis of 49 patients with Wilms' tumor, non-Wilms' tumor renal tumors, and age-matched controls, leading to the quantitation of 6520 urine proteins. Supervised analysis revealed specific urine markers of renal rhabdoid tumors, kidney clear cell sarcomas, renal cell carcinomas as well as those detected in patients with cured and relapsed Wilms' tumor. In particular, urine prohibitin was significantly elevated at diagnosis in patients with relapsed as compared with cured Wilms' tumor. In a validation cohort of 139 patients, a specific urine prohibitin ELISA demonstrated that prohibitin concentrations greater than 998 ng/mL at diagnosis were significantly associated with ultimate Wilms' tumor relapse. Immunohistochemical analysis revealed that prohibitin was highly expressed in primary Wilms' tumor specimens and associated with disease stage. Using functional genetic experiments, we found that prohibitin was required for the growth and survival of Wilms' tumor cells. Overexpression of prohibitin was sufficient to block intrinsic mitochondrial apoptosis and to cause resistance to diverse chemotherapy drugs, at least in part by dysregulating factors that control apoptotic cytochrome c release from mitochondrial cristae. Thus, urine prohibitin may improve therapy stratification, noninvasive monitoring of treatment response, and early disease detection. In addition, therapeutic targeting of chemotherapy resistance induced by prohibitin dysregulation may offer improved therapies for patients with Wilms' and other relapsed or refractory tumors.
Collapse
Affiliation(s)
- Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Saima Ahmed
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Melissa Burns
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Anton G Henssen
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ian MacArthur
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shehana Gunasekera
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lyvia Gaewsky
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gary Bradwin
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Anthony Letai
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ying He
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Yueh-Yun Chi
- Children's Oncology Group Statistics and Data Center, Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Michael LaQuaglia
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Todd Heaton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeffrey S Dome
- Center for Cancer and Blood Disorders, Children's National Health System, Washington, DC, USA
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Elizabeth Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | | | - Hanno Steen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alex Kentsis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|