1
|
Qu P, Li L, Jin Q, Liu D, Qiao Y, Zhang Y, Sun Q, Ran S, Li Z, Liu T, Peng L. Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Int J Mol Med 2024; 54:104. [PMID: 39301658 DOI: 10.3892/ijmm.2024.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end‑stage renal disease, and is characterized by persistent proteinuria and decreased glomerular filtration rate. Despite extensive efforts, the increasing incidence highlights the urgent need for more effective treatments. Histone methylation is a crucial epigenetic modification, and its alteration can destabilize chromatin structure, thereby regulating the transcriptional activity of specific genes. Histone methylation serves a substantial role in the onset and progression of various diseases. In patients with DKD, changes in histone methylation are pivotal in mediating the interactions between genetic and environmental factors. Targeting these modifications shows promise in ameliorating renal histological manifestations, tissue fibrosis and proteinuria, and represents a novel therapeutic frontier with the potential to halt DKD progression. The present review focuses on the alterations in histone methylation during the development of DKD, systematically summarizes its impact on various renal parenchymal cells and underscores the potential of targeted histone methylation modifications in improving DKD outcomes.
Collapse
Affiliation(s)
- Peng Qu
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lanfang Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Donghai Liu
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yuan Qiao
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yijia Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiuyue Sun
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Shuman Ran
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zecheng Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
2
|
Beamish JA, Watts JA, Dressler GR. Gene regulation in regeneration after acute kidney injury. J Biol Chem 2024; 300:107520. [PMID: 38950862 PMCID: PMC11325799 DOI: 10.1016/j.jbc.2024.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Acute kidney injury (AKI) is a common condition associated with significant morbidity, mortality, and cost. Injured kidney tissue can regenerate after many forms of AKI. However, there are no treatments in routine clinical practice to encourage recovery. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that orchestrate kidney recovery. The advent of high-throughput sequencing technologies and genetic mouse models has opened an unprecedented window into the transcriptional dynamics that accompany both successful and maladaptive repair. AKI recovery shares similar cell-state transformations with kidney development, which can suggest common mechanisms of gene regulation. Several powerful bioinformatic strategies have been developed to infer the activity of gene regulatory networks by combining multiple forms of sequencing data at single-cell resolution. These studies highlight not only shared stress responses but also key changes in gene regulatory networks controlling metabolism. Furthermore, chromatin immunoprecipitation studies in injured kidneys have revealed dynamic epigenetic modifications at enhancer elements near target genes. This review will highlight how these studies have enhanced our understanding of gene regulation in injury response and regeneration.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
3
|
Beamish JA, Telang AC, McElliott MC, Al-Suraimi A, Chowdhury M, Ference-Salo JT, Otto EA, Menon R, Soofi A, Weinberg JM, Patel SR, Dressler GR. Pax protein depletion in proximal tubules triggers conserved mechanisms of resistance to acute ischemic kidney injury preventing transition to chronic kidney disease. Kidney Int 2024; 105:312-327. [PMID: 37977366 PMCID: PMC10958455 DOI: 10.1016/j.kint.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. Here, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI and found them upregulated after severe AKI and correlated with chronic injury. Surprisingly, proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to pre-conditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of proximal tubule cells in the S3 segment that displayed features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic pre-conditioning, and female sex. Thus, our results identified a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both the injury response and protection from ischemic AKI.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Asha C Telang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison C McElliott
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anas Al-Suraimi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mahboob Chowdhury
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jenna T Ference-Salo
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanjeevkumar R Patel
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Soofi A, Li V, Beamish JA, Abdrabh S, Hamad M, Das NK, Shah YM, Dressler GR. Renal-specific loss of ferroportin disrupts iron homeostasis and attenuates recovery from acute kidney injury. Am J Physiol Renal Physiol 2024; 326:F178-F188. [PMID: 37994409 PMCID: PMC11198972 DOI: 10.1152/ajprenal.00184.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic kidney disease is increasing at an alarming rate and correlates with the increase in diabetes, obesity, and hypertension that disproportionately impact socioeconomically disadvantaged communities. Iron plays essential roles in many biological processes including oxygen transport, mitochondrial function, cell proliferation, and regeneration. However, excess iron induces the generation and propagation of reactive oxygen species, which lead to oxidative stress, cellular damage, and ferroptosis. Iron homeostasis is regulated in part by the kidney through iron resorption from the glomerular filtrate and exports into the plasma by ferroportin (FPN). Yet, the impact of iron overload in the kidney has not been addressed. To test more directly whether excess iron accumulation is toxic to kidneys, we generated a kidney proximal tubule-specific knockout of FPN. Despite significant intracellular iron accumulation in FPN mutant tubules, basal kidney function was not measurably different from wild type kidneys. However, upon induction of acute kidney injury (AKI), FPN mutant kidneys exhibited significantly more damage and failed recovery, evidence for ferroptosis, and increased fibrosis. Thus, disruption of iron export in proximal tubules, leading to iron overload, can significantly impair recovery from AKI and can contribute to progressive renal damage indicative of chronic kidney disease. Understanding the mechanisms that regulate iron homeostasis in the kidney may provide new therapeutic strategies for progressive kidney disease and other ferroptosis-associated disorders.NEW & NOTEWORTHY Physiological iron homeostasis depends in part on renal resorption and export into the plasma. We show that specific deletion of iron exporters in the proximal tubules sensitizes cells to injury and inhibits recovery. This can promote a chronic kidney disease phenotype. Our paper demonstrates the need for iron balance in the proximal tubules to maintain and promote healthy recovery after acute kidney injury.
Collapse
Affiliation(s)
- Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Vivie Li
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jeffrey A Beamish
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Sham Abdrabh
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Yatrik M Shah
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
5
|
André C, Bodeau S, Kamel S, Bennis Y, Caillard P. The AKI-to-CKD Transition: The Role of Uremic Toxins. Int J Mol Sci 2023; 24:16152. [PMID: 38003343 PMCID: PMC10671582 DOI: 10.3390/ijms242216152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair. In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration and leads to chronic kidney disease (CKD). Reduced kidney secretion capacity is characterized by the plasma accumulation of biologically active molecules, referred to as uremic toxins (UTs). These toxins have a role in the development of neurological, cardiovascular, bone, and renal complications of CKD. However, UTs might also cause CKD as well as be the consequence. Recent studies have shown that these molecules accumulate early in AKI and contribute to the establishment of this pro-inflammatory and profibrotic environment in the kidney. The objective of the present work was to review the mechanisms of UT toxicity that potentially contribute to the AKI-to-CKD transition in each renal compartment.
Collapse
Affiliation(s)
- Camille André
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- GRAP Laboratory, INSERM UMR 1247, University of Picardy Jules Verne, 80000 Amiens, France
| | - Sandra Bodeau
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Saïd Kamel
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Clinical Biochemistry, Amiens Medical Center, 80000 Amiens, France
| | - Youssef Bennis
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Pauline Caillard
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Nephrology, Dialysis and Transplantation, Amiens Medical Center, 80000 Amiens, France
| |
Collapse
|
6
|
Beamish JA, Telang AC, McElliott MC, Al-Suraimi A, Chowdhury M, Ference-Salo JT, Otto EA, Menon R, Soofi A, Weinberg JM, Patel SR, Dressler GR. Pax Protein Depletion in Proximal Tubules Triggers Conserved Mechanisms of Resistance to Acute Ischemic Kidney Injury and Prevents Transition to Chronic Kidney Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.559511. [PMID: 37873377 PMCID: PMC10592940 DOI: 10.1101/2023.10.03.559511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. In this report, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI. We found that Pax2 and Pax8 are upregulated after severe AKI and correlate with chronic injury. Surprisingly, we then discovered that proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to preconditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of S3 proximal tubule cells that display features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic preconditioning, and female sex. Taken together, our results identify a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both injury response and protection from ischemic AKI. TRANSLATIONAL STATEMENT Identifying the molecular and genetic regulators unique to the nephron that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are two homologous nephron-specific transcription factors that are critical for kidney development and physiology. Here we report that proximal-tubule-selective depletion of Pax2 and Pax8 protects against both acute and chronic injury and induces an expression profile in the S3 proximal tubule with common features shared among diverse conditions that protect against ischemia. These findings highlight a new role for Pax proteins as potential therapeutic targets to treat AKI.
Collapse
|
7
|
McElliott MC, Al-Suraimi A, Telang AC, Ference-Salo JT, Chowdhury M, Soofi A, Dressler GR, Beamish JA. High-throughput image analysis with deep learning captures heterogeneity and spatial relationships after kidney injury. Sci Rep 2023; 13:6361. [PMID: 37076596 PMCID: PMC10115810 DOI: 10.1038/s41598-023-33433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Recovery from acute kidney injury can vary widely in patients and in animal models. Immunofluorescence staining can provide spatial information about heterogeneous injury responses, but often only a fraction of stained tissue is analyzed. Deep learning can expand analysis to larger areas and sample numbers by substituting for time-intensive manual or semi-automated quantification techniques. Here we report one approach to leverage deep learning tools to quantify heterogenous responses to kidney injury that can be deployed without specialized equipment or programming expertise. We first demonstrated that deep learning models generated from small training sets accurately identified a range of stains and structures with performance similar to that of trained human observers. We then showed this approach accurately tracks the evolution of folic acid induced kidney injury in mice and highlights spatially clustered tubules that fail to repair. We then demonstrated that this approach captures the variation in recovery across a robust sample of kidneys after ischemic injury. Finally, we showed markers of failed repair after ischemic injury were correlated both spatially within and between animals and that failed repair was inversely correlated with peritubular capillary density. Combined, we demonstrate the utility and versatility of our approach to capture spatially heterogenous responses to kidney injury.
Collapse
Affiliation(s)
- Madison C McElliott
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Anas Al-Suraimi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Asha C Telang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Jenna T Ference-Salo
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Mahboob Chowdhury
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Wang J, Shen F, Liu F, Zhuang S. Histone Modifications in Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:466-477. [PMID: 36590679 PMCID: PMC9798838 DOI: 10.1159/000527799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
Abstract
Background Acute kidney injury (AKI) is a serious clinical problem associated with high morbidity and mortality worldwide. The pathophysiology and pathogenesis of AKI is complex and multifactorial. In recent years, epigenetics has emerged as an important regulatory mechanism in AKI. Summary There are several types of histone modification, including methylation, acetylation, phosphorylation, crotonylation, citrullination, and sumoylation. Histone modifications are associated with the transcription of many genes and activation of multiple signaling pathways that contribute to the pathogenesis of AKI. Thus, targeting histone modification may offer novel strategies to protect kidneys from AKI and enhance kidney repair and recovery. In this review, we summarize recent advances on the modification, regulation, and implication of histone modifications in AKI. Key Messages Histone modifications contribute to the pathogenesis of AKI. Understanding of epigenetic regulation in AKI will aid in establishing the utility of pharmacologic targeting of histone modification as a potential novel therapy for AKI.
Collapse
Affiliation(s)
- Jun Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Zivotic M, Dundjerovic D, Naumovic R, Kovacevic S, Ivanov M, Karanovic D, Nikolic G, Markovic-Lipkovski J, Radojevic Skodric S, Nesovic Ostojic J. Clinicopathological Relevance of PAX8 Expression Patterns in Acute Kidney Injury and Chronic Kidney Diseases. Diagnostics (Basel) 2022; 12:2036. [PMID: 36140438 PMCID: PMC9497907 DOI: 10.3390/diagnostics12092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription factor PAX8, expressed during embryonic kidney development, has been previously detected in various kidney tumors. In order to investigate expression of PAX8 transcription factor in acute kidney injury (AKI) and chronic kidney diseases (CKD), immunohistochemical analysis was performed. Presence, location and extent of PAX8 expression were analyzed among 31 human kidney samples of AKI (25 autopsy cases, 5 kidney biopsies with unknown etiology and 1 AKI with confirmed myoglobin cast nephropathy), as well as in animals with induced postischemic AKI. Additionally, expression pattern was analyzed in 20 kidney biopsy samples of CKD. Our study demonstrates that various kidney diseases with chronic disease course that results in the formation of tubular atrophy and interstitial fibrosis, lead to PAX8 expression in the nuclei of proximal tubules. Furthermore, patients with PAX8 detected within the damaged proximal tubuli would be carefully monitored, since deterioration in kidney function was observed during follow-up. We also showed that myoglobin provoked acute kidney injury followed with large extent of renal damage, was associated with strong nuclear expression of PAX8 in proximal tubular cells. These results were supported and followed by data obtained in experimental model of induced postischemic acute kidney injury. Considering these findings, we can assume that PAX8 protein might be involved in regeneration process and recovery after acute kidney injury. Thus, accordingly, all investigation concerning PAX8 immunolabeling should be performed on biopsy samples of the living individuals.
Collapse
Affiliation(s)
- Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusko Dundjerovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Radomir Naumovic
- Clinic of Nephrology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanjin Kovacevic
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Ivanov
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Karanovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Gorana Nikolic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | | | - Jelena Nesovic Ostojic
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Zhao YB, Wei W, Lin XX, Chai YF, Jin H. The Role of Histone H3 Methylation in Acute Kidney Injury. Drug Des Devel Ther 2022; 16:2453-2461. [PMID: 35941926 PMCID: PMC9356748 DOI: 10.2147/dddt.s376673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome in which kidney function declines sharply due to various reasons. Although the morbidity and mortality of AKI are high, the mechanism of occurrence and development of AKI has not been fully elucidated, and precise prevention and treatment measures are lacking. Epigenetics is a branch of genetics that provides a new perspective to explore the pathophysiology of AKI and renal repair. A large amount of literature shows that the methylation mechanism of H3 in histones is closely related to the development of kidney diseases. The sorting out of histone H3 methylation mechanism in AKI and kidney repair can help understand the pathophysiological process of the disease more deeply. It may also provide new ideas for diagnosing and treating of the disease.
Collapse
Affiliation(s)
- Yi-Bo Zhao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Xiao-Xi Lin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China
- Correspondence: Heng Jin; Yan-Fen Chai, Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300000, People’s Republic of China, Email ;
| |
Collapse
|
12
|
Wessely O, Shankland SJ. The proliferative and the antifibrotic side of PAX2 in tubular repair. Kidney Int 2022; 102:12-13. [PMID: 35738826 DOI: 10.1016/j.kint.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Regenerative repair following injury to proximal tubular epithelial cells (PTECs) is essential to restore the kidney to normal function in acute kidney injury. Failure to accomplish this leads to chronic kidney disease. Expression of the paired-box transcription factor Pax2 in PTECs is required for their regenerative proliferation and repair. However, a loss-of-function study now shows that the absence of Pax2 not only impacts PTEC proliferation but also causes myofibroblast recruitment leading to excessive tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
13
|
Cheng Y, Chen Y, Wang G, Liu P, Xie G, Jing H, Chen H, Fan Y, Wang M, Zhou J. Protein Methylation in Diabetic Kidney Disease. Front Med (Lausanne) 2022; 9:736006. [PMID: 35647002 PMCID: PMC9133329 DOI: 10.3389/fmed.2022.736006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by persistent urine aberrations, structural abnormalities, or impaired excretory renal function. Diabetes is the leading cause of CKD. Their common pathological manifestation is renal fibrosis. Approximately half of all patients with type 2 diabetes and one-third with type 1 diabetes will develop CKD. However, renal fibrosis mechanisms are still poorly understood, especially post-transcriptional and epigenetic regulation. And an unmet need remains for innovative treatment strategies for preventing, arresting, treating, and reversing diabetic kidney disease (DKD). People believe that protein methylation, including histone and non-histone, is an essential type of post-translational modification (PTM). However, prevalent reviews mainly focus on the causes such as DNA methylation. This review will take insights into the protein part. Furthermore, by emphasizing the close relationship between protein methylation and DKD, we will summarize the clinical research status and foresee the application prospect of protein methyltransferase (PMT) inhibitors in DKD treatment. In a nutshell, our review will contribute to a more profound understanding of DKD’s molecular mechanism and inspire people to dig into this field.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guodong Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, The Eighth People’s Hospital of Guangzhou, Guangzhou, China
| | - Youlin Fan
- Department of Anesthesiology, Guangzhou Panyu Central Hospital of Panyu District, Guangzhou, China
| | - Min Wang
- Department of Anesthesiology, The Gaoming People’s Hospital, Foshan, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
14
|
Sako K, Furuichi K, Makiishi S, Yamamura Y, Okumura T, Le T, Kitajima S, Toyama T, Hara A, Iwata Y, Sakai N, Shimizu M, Niimura F, Matsusaka T, Kaneko S, Wada T. Cyclin-dependent kinase 4-related tubular epithelial cell proliferation is regulated by Paired box gene 2 in kidney ischemia-reperfusion injury. Kidney Int 2022; 102:45-57. [PMID: 35483529 DOI: 10.1016/j.kint.2022.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
Paired box 2 (Pax2) is a transcription factor essential for kidney development and is reactivated in proximal tubular epithelial cells (PTECs) during recovery from kidney injury. However, the role of Pax2 in this process is still unknown. Here the role of Pax2 reactivation during injury was examined in the proliferation of PTECs using an ischemia-reperfusion injury (IRI) mouse model. Kidney proximal tubule-specific Pax2 conditional knockout mice were generated by mating kidney androgen-regulated protein-Cre and Pax2 flox mice. The degree of cell proliferation and fibrosis was assessed and a Pax2 inhibitor (EG1) was used to evaluate the role of Pax2 in the hypoxic condition of cultured PTECs (O2 5%, 24 hours). The number of Pax2-positive cells and Pax2 mRNA increased after IRI. Sirius red staining indicated that the area of interstitial fibrosis was significantly larger in knockout mice 14 days after IRI. The number of Ki-67-positive cells (an index of proliferation) was significantly lower in knockout than in wild-type mice after IRI, whereas the number of TUNEL-positive cells (an index of apoptotic cells) was significantly higher in knockout mice four days after IRI. Expression analyses of cell cycle-related genes showed that cyclin-dependent kinase 4 (CDK4) was significantly less expressed in the Pax2 knockout mice. In vitro data showed that the increase in CDK4 mRNA and protein expression induced by hypoxia was attenuated by EG1. Thus, Pax2 reactivation may be involved in PTEC proliferation by activating CDK4, thereby limiting kidney fibrosis.
Collapse
Affiliation(s)
- Keisuke Sako
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- Department of Nephrology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shohei Makiishi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshiya Okumura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Thu Le
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Division of Infection Control, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Fumio Niimura
- Department of Pediatrics, School of Medicine, Tokai University, Isehara, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, School of Medicine, Tokai University, Isehara, Japan; Institute of Medical Science, Tokai University, Isehara, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
15
|
Kosanović M, Milutinovic B, Glamočlija S, Morlans IM, Ortiz A, Bozic M. Extracellular Vesicles and Acute Kidney Injury: Potential Therapeutic Avenue for Renal Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073792. [PMID: 35409151 PMCID: PMC8998560 DOI: 10.3390/ijms23073792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden decline of renal function and represents a global clinical problem due to an elevated morbidity and mortality. Despite many efforts, currently there are no treatments to halt this devastating condition. Extracellular vesicles (EVs) are nanoparticles secreted by various cell types in both physiological and pathological conditions. EVs can arise from distinct parts of the kidney and can mediate intercellular communication between various cell types along the nephron. Besides their potential as diagnostic tools, EVs have been proposed as powerful new tools for regenerative medicine and have been broadly studied as therapeutic mediators in different models of experimental AKI. In this review, we present an overview of the basic features and biological relevance of EVs, with an emphasis on their functional role in cell-to-cell communication in the kidney. We explore versatile roles of EVs in crucial pathophysiological mechanisms contributing to AKI and give a detailed description of the renoprotective effects of EVs from different origins in AKI. Finally, we explain known mechanisms of action of EVs in AKI and provide an outlook on the potential clinical translation of EVs in the setting of AKI.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Bojana Milutinovic
- Department of Neurosurgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;
| | - Sofija Glamočlija
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Ingrid Mena Morlans
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain;
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
- Correspondence:
| |
Collapse
|
16
|
Bradford STJ, Grimley E, Laszczyk AM, Lee PH, Patel SR, Dressler GR. Identification of Pax protein inhibitors that suppress target gene expression and cancer cell proliferation. Cell Chem Biol 2022; 29:412-422.e4. [PMID: 34822752 PMCID: PMC8934255 DOI: 10.1016/j.chembiol.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/24/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
The Pax family of developmental control genes are frequently deregulated in human disease. In the kidney, Pax2 is expressed in developing nephrons but not in adult proximal and distal tubules, whereas polycystic kidney epithelia or renal cell carcinoma continues to express high levels. Pax2 reduction in mice or cell culture can slow proliferation of cystic epithelial cells or renal cancer cells. Thus, inhibition of Pax activity may be a viable, cell-type-specific therapy. We designed an unbiased, cell-based, high-throughput screen that identified triazolo pyrimidine derivatives that attenuate Pax transactivation ability. We show that BG-1 inhibits Pax2-positive cancer cell growth and target gene expression but has little effect on Pax2-negative cells. Chromatin immunoprecipitation suggests that these inhibitors prevent Pax protein interactions with the histone H3K4 methylation complex at Pax target genes in renal cells. Thus, these compounds may provide structural scaffolds for kidney-specific inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Shayna T J Bradford
- Department of Pathology, University of Michigan, BSRB 2049, 109 Zina Pitcher Drive, Ann Arbor, MI 48109, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Edward Grimley
- Department of Pathology, University of Michigan, BSRB 2049, 109 Zina Pitcher Drive, Ann Arbor, MI 48109, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ann M Laszczyk
- Department of Pathology, University of Michigan, BSRB 2049, 109 Zina Pitcher Drive, Ann Arbor, MI 48109, USA
| | - Pil H Lee
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sanjeevkumar R Patel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, BSRB 2049, 109 Zina Pitcher Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Li X, Jiang B, Zou Y, Zhang J, Fu YY, Zhai XY. Roxadustat (FG-4592) Facilitates Recovery From Renal Damage by Ameliorating Mitochondrial Dysfunction Induced by Folic Acid. Front Pharmacol 2022; 12:788977. [PMID: 35280255 PMCID: PMC8915431 DOI: 10.3389/fphar.2021.788977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 01/28/2023] Open
Abstract
Incomplete recovery from acute kidney injury induced by folic acid is a major risk factor for progression to chronic kidney disease. Mitochondrial dysfunction has been considered a crucial contributor to maladaptive repair in acute kidney injury. Treatment with FG-4592, an inhibitor of hypoxia inducible factor prolyl-hydroxylase, is emerging as a new approach to attenuate renal damage; however, the underlying mechanism has not been fully elucidated. The current research demonstrated the protective effect of FG-4592 against renal dysfunction and histopathological damage on the 7th day after FA administration. FG-4592 accelerated tubular repair by promoting tubular cell regeneration, as indicated by increased proliferation of cell nuclear antigen-positive tubular cells, and facilitated structural integrity, as reflected by up-regulation of the epithelial inter-cellular tight junction molecule occludin-1 and the adherens junction molecule E-cadherin. Furthermore, FG-4592 ameliorated tubular functional recovery by restoring the function-related proteins aquaporin1, aquaporin2, and sodium chloride cotransporter. Specifically, FG-4592 pretreatment inhibited hypoxia inducible factor-1α activation on the 7th day after folic acid injection, which ameliorated ultrastructural abnormalities, promoted ATP production, and attenuated excessive reactive oxygen species production both in renal tissue and mitochondria. This was mainly mediated by balancing of mitochondrial dynamics, as indicated by down-regulation of mitochondrial fission 1 and dynamin-related protein 1 as well as up-regulation of mitofusin 1 and optic atrophy 1. Moreover, FG-4592 pretreatment attenuated renal tubular epithelial cell death, kidney inflammation, and subsequent interstitial fibrosis. In vitro, TNF-α-induced HK-2 cells injury could be ameliorated by FG-4592 pretreatment. In summary, our findings support the protective effect of FG-4592 against folic acid-induced mitochondrial dysfunction; therefore, FG-4592 treatment can be used as a useful strategy to facilitate tubular repair and mitigate acute kidney injury progression.
Collapse
Affiliation(s)
- Xue Li
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Jiang
- Department of Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yu Zou
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Jie Zhang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yuan-Yuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
- Institute of Nephropathology, China Medical University, Shenyang, China
- *Correspondence: Xiao-Yue Zhai,
| |
Collapse
|
18
|
Okamura DM, Brewer CM, Wakenight P, Bahrami N, Bernardi K, Tran A, Olson J, Shi X, Yeh SY, Piliponsky A, Collins SJ, Nguyen ED, Timms AE, MacDonald JW, Bammler TK, Nelson BR, Millen KJ, Beier DR, Majesky MW. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 2021; 24:103269. [PMID: 34849462 PMCID: PMC8609232 DOI: 10.1016/j.isci.2021.103269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrosis-driven solid organ failure is an enormous burden on global health. Spiny mice (Acomys) are terrestrial mammals that can regenerate severe skin wounds without scars to avoid predation. Whether spiny mice also regenerate internal organ injuries is unknown. Here, we show that despite equivalent acute obstructive or ischemic kidney injury, spiny mice fully regenerate nephron structure and organ function without fibrosis, whereas C57Bl/6 or CD1 mice progress to complete organ failure with extensive renal fibrosis. Two mechanisms for vertebrate regeneration have been proposed that emphasize either extrinsic (pro-regenerative macrophages) or intrinsic (surviving cells of the organ itself) controls. Comparative transcriptome analysis revealed that the Acomys genome appears poised at the time of injury to initiate regeneration by surviving kidney cells, whereas macrophage accumulation was not detected until about day 7. Thus, we provide evidence for rapid activation of a gene expression signature for regenerative wound healing in the spiny mouse kidney.
Collapse
Affiliation(s)
- Daryl M. Okamura
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Chris M. Brewer
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Paul Wakenight
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Nadia Bahrami
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Kristina Bernardi
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Amy Tran
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Jill Olson
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Xiaogang Shi
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Szu-Ying Yeh
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Adrian Piliponsky
- Center for Immunity & Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Sarah J. Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Elizabeth D. Nguyen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Andrew E. Timms
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - James W. MacDonald
- Department of Environmental & Occupational Health, University of Washington, Seattle, WA 98195, USA
| | - Theo K. Bammler
- Department of Environmental & Occupational Health, University of Washington, Seattle, WA 98195, USA
| | - Branden R. Nelson
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Kathleen J. Millen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - David R. Beier
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Mark W. Majesky
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Vegfa promoter gene hypermethylation at HIF1α binding site is an early contributor to CKD progression after renal ischemia. Sci Rep 2021; 11:8769. [PMID: 33888767 PMCID: PMC8062449 DOI: 10.1038/s41598-021-88000-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 11/08/2022] Open
Abstract
Chronic hypoxia is a major contributor to Chronic Kidney Disease (CKD) after Acute Kidney Injury (AKI). However, the temporal relation between the acute insult and maladaptive renal response to hypoxia remains unclear. In this study, we analyzed the time-course of renal hemodynamics, oxidative stress, inflammation, and fibrosis, as well as epigenetic modifications, with focus on HIF1α/VEGF signaling, in the AKI to CKD transition. Sham-operated, right nephrectomy (UNx), and UNx plus renal ischemia (IR + UNx) groups of rats were included and studied at 1, 2, 3, or 4 months. The IR + UNx group developed CKD characterized by progressive proteinuria, renal dysfunction, tubular proliferation, and fibrosis. At first month post-ischemia, there was a twofold significant increase in oxidative stress and reduction in global DNA methylation that was maintained throughout the study. Hif1α and Vegfa expression were depressed in the first and second-months post-ischemia, and then Hif1α but not Vegfa expression was recovered. Interestingly, hypermethylation of the Vegfa promoter gene at the HIF1α binding site was found, since early stages of the CKD progression. Our findings suggest that renal hypoperfusion, inefficient hypoxic response, increased oxidative stress, DNA hypomethylation, and, Vegfa promoter gene hypermethylation at HIF1α binding site, are early determinants of AKI-to-CKD transition.
Collapse
|