1
|
Wang D, Wang T, Kim D, Tan S, Liu S, Wan J, Deng Q. MicroRNA-375 modulates neutrophil chemotaxis via targeting Cathepsin B in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109933. [PMID: 39343064 PMCID: PMC11561466 DOI: 10.1016/j.fsi.2024.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Neutrophils are crucial for defense against numerous infections, and their migration and activations are tightly regulated to prevent collateral tissue damage. We previously performed a neutrophil-specific miRNA overexpression screening and identified several microRNAs, including miR-375, as potent modulators for neutrophil activity. Overexpression of miR-375 decreases neutrophil motility and migration in zebrafish and human neutrophil-like cells. We screened the genes downregulated by miR-375 in zebrafish neutrophils and identified that Cathepsin B (Ctsba) is required for neutrophil motility and chemotaxis upon tail wounding and bacterial infection. Pharmacological inhibition or neutrophil-specific knockout of ctsba significantly decreased the neutrophil chemotaxis in zebrafish and survival upon systemic bacterial infection. Notably, Ctsba knockdown in human neutrophil-like cells also resulted in reduced chemotaxis. Inhibiting integrin receptor function using RGDS rescued the neutrophil migration defects and susceptibility to systemic infection in zebrafish with either miR-375 overexpression or ctsba knockout. Our results demonstrate that miR-375 and its target Ctsba modulate neutrophil activity during tissue injury and bacterial infection in vivo, providing novel insights into neutrophil biology and the overall inflammation process.
Collapse
Affiliation(s)
- Decheng Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel Kim
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shelly Tan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Xu S, Tan S, Romanos P, Reedy JL, Zhang Y, Mansour MK, Vyas JM, Mecsas J, Mou H, Leong JM. Blocking HXA 3-mediated neutrophil elastase release during S. pneumoniae lung infection limits pulmonary epithelial barrier disruption and bacteremia. mBio 2024; 15:e0185624. [PMID: 39120139 PMCID: PMC11389395 DOI: 10.1128/mbio.01856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant threefold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin, triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP) did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased the release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier-disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.IMPORTANCEStreptococcus pneumoniae (Sp), a leading cause of pneumonia, can spread from the lung into the bloodstream to cause systemic disease. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that limit pathologic host immune responses to Sp. Excessive polymorphonuclear leukocyte (PMN) infiltration into Sp-infected airways promotes systemic disease. Using stem cell-derived respiratory cultures that reflect bona fide lung epithelium, we identified eicosanoid hepoxilin A3 as a critical pulmonary PMN chemoattractant that is sufficient to drive PMN-mediated epithelial damage by inducing the release of neutrophil elastase. Inhibition of the release or activity of this protease in mice limited epithelial barrier disruption and bacterial dissemination, suggesting a new host-directed treatment for Sp lung infection.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Patricia Romanos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Biotechnology, Francisco de Vitoria University, Madrid, Spain
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B Levy Center for the Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Xu S, Tan S, Romanos P, Reedy JL, Zhang Y, Mansour MK, Vyas JM, Mecsas J, Mou H, Leong JM. Blocking HXA 3-mediated neutrophil elastase release during S. pneumoniae lung infection limits pulmonary epithelial barrier disruption and bacteremia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600637. [PMID: 38979170 PMCID: PMC11230237 DOI: 10.1101/2024.06.25.600637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant three-fold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin (PLY), triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface (ALI) cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant fMLP did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Patricia Romanos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Francisco de Vitoria University, Madrid, Spain
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Stuart B Levy Center for the Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
| |
Collapse
|
4
|
Haynes ME, Sullivan DP, Muller WA. Neutrophil Infiltration and Function in the Pathogenesis of Inflammatory Airspace Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:628-636. [PMID: 38309429 PMCID: PMC11074974 DOI: 10.1016/j.ajpath.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Neutrophils are an important cell type often considered the body's first responders to inflammatory insult or damage. They are recruited to the tissue of the lungs in patients with inflammatory airspace diseases and have unique and complex functions that range from helpful to harmful. The uniqueness of these functions is due to the heterogeneity of the inflammatory cascade and retention in the vasculature. Neutrophils are known to marginate, or remain stagnant, in the lungs even in nondisease conditions. This review discusses the ways in which the recruitment, presence, and function of neutrophils in the airspace of the lungs are unique from those of other tissues, and the complex effects of neutrophils on pathogenesis. Inflammatory mediators produced by neutrophils, such as neutrophil elastase, proresolving mediators, and neutrophil extracellular traps, dramatically affect the outcomes of patients with disease of the lungs.
Collapse
Affiliation(s)
- Maureen E Haynes
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
5
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
7
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
9
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
10
|
Najjari Z, Sadri F, Varshosaz J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J Pharm Sci 2023; 18:100873. [PMID: 38173712 PMCID: PMC10762358 DOI: 10.1016/j.ajps.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
The world has been dealing with a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019, which threatens the lives of many people worldwide. COVID-19 causes respiratory infection with different symptoms, from sneezing and coughing to pneumonia and sometimes gastric symptoms. Researchers worldwide are actively developing novel drug delivery systems (DDSs), such as stimuli-responsive DDSs. The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating "smart" DDS that can effectively control dosage, sustained release, individual variations, and targeted delivery. To conduct a comprehensive literature survey for this article, the terms "Stimuli-responsive", "COVID-19″ and "Drug delivery" were searched on databases/search engines like "Google Scholar", "NCBI", "PubMed", and "Science Direct". Many different types of DDSs have been proposed, including those responsive to various exogenous (light, heat, ultrasound and magnetic field) or endogenous (microenvironmental changes in pH, ROS and enzymes) stimuli. Despite significant progress in DDS research, several challenging issues must be addressed to fill the gaps in the literature. Therefore, this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
Collapse
Affiliation(s)
- Zeinab Najjari
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Sadri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Nyandoro VO, Omolo CA, Ismail EA, Yong L, Govender T. Inflammation-responsive drug delivery nanosystems for treatment of bacterial-induced sepsis. Int J Pharm 2023; 644:123346. [PMID: 37633537 DOI: 10.1016/j.ijpharm.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Sepsis, a complication of dysregulated host immune systemic response to an infection, is life threatening and causes multiple organ injuries. Sepsis is recognized by WHO as a big contributor to global morbidity and mortality. The heterogeneity in sepsis pathophysiology, antimicrobial resistance threat, the slowdown in the development of antimicrobials, and limitations of conventional dosage forms jeopardize the treatment of sepsis. Drug delivery nanosystems are promising tools to overcome some of these challenges. Among the drug delivery nanosystems, inflammation-responsive nanosystems have attracted considerable interest in sepsis treatment due to their ability to respond to specific stimuli in the sepsis microenvironment to release their payload in a precise, targeted, controlled, and rapid manner compared to non-responsive nanosystems. These nanosystems posit superior therapeutic potential to enhance sepsis treatment. This review critically evaluates the recent advances in the design of drug delivery nanosystems that are inflammation responsive and their potential in enhancing sepsis treatment. The sepsis microenvironment's unique features, such as acidic pH, upregulated receptors, overexpressed enzymes, and enhanced oxidative stress, that form the basis for their design have been adequately discussed. These inflammation-responsive nanosystems have been organized into five classes namely: Receptor-targeted nanosystems, pH-responsive nanosystems, redox-responsive nanosystems, enzyme-responsive nanosystems, and multi-responsive nanosystems. Studies under each class have been thematically grouped and discussed with an emphasis on the polymers used in their design, nanocarriers, key characterization, loaded actives, and key findings on drug release and therapeutic efficacy. Further, this information is concisely summarized into tables and supplemented by inserted figures. Additionally, this review adeptly points out the strengths and limitations of the studies and identifies research avenues that need to be explored. Finally, the challenges and future perspectives on these nanosystems have been thoughtfully highlighted.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Chemistry and Pharmaceutics, School of Pharmacy, Kabarak University, Nakuru, Kenya
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Liu Yong
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), China
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
12
|
Helmecke T, Hahn D, Matzke N, Ferdinand L, Franke L, Kühn S, Fischer G, Werner C, Maitz MF. Inflammation-Controlled Anti-Inflammatory Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206412. [PMID: 36581490 PMCID: PMC9982591 DOI: 10.1002/advs.202206412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
While autoregulative adaptation is a common feature of living tissues, only a few feedback-controlled adaptive biomaterials are available so far. This paper herein reports a new polymer hydrogel platform designed to release anti-inflammatory molecules in response to the inflammatory activation of human blood. In this system, anti-inflammatory peptide drugs, targeting either the complement cascade, a complement receptor, or cyclophilin A, are conjugated to the hydrogel by a peptide sequence that is cleaved by elastase released from activated granulocytes. As a proof of concept, the adaptive drug delivery from the gel triggered by activated granulocytes and the effect of the released drug on the respective inflammatory pathways are demonstrated. Adjusting the gel functionalization degree is shown to allow for tuning the drug release profiles to effective doses within a micromolar range. Feedback-controlled delivery of covalently conjugated drugs from a hydrogel matrix is concluded to provide valuable safety features suitable to equip medical devices with highly active anti-inflammatory agents without suppressing the general immunosurveillance.
Collapse
Affiliation(s)
- Tina Helmecke
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Dominik Hahn
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Nadine Matzke
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Lisa Ferdinand
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Lars Franke
- Max Planck Institute for Multidisciplinary Sciences37077GöttingenGermany
| | - Sebastian Kühn
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| | - Gunter Fischer
- Max Planck Institute for Multidisciplinary Sciences37077GöttingenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
- Technische Universität DresdenCluster of Excellence Physics of LifeCenter for Regenerative Therapies Dresden and Faculty of Chemistry and Food ChemistryFetscherstraße 10501307DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenInstitute of Biofunctional Polymer MaterialsHohe Strasse 601069DresdenGermany
| |
Collapse
|
13
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
14
|
Liu W, Cronin CG, Cao Z, Wang C, Ruan J, Pulikkot S, Hall A, Sun H, Groisman A, Chen Y, Vella AT, Hu L, Liang BT, Fan Z. Nexinhib20 Inhibits Neutrophil Adhesion and β 2 Integrin Activation by Antagonizing Rac-1-Guanosine 5'-Triphosphate Interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1574-1585. [PMID: 36165184 PMCID: PMC9529951 DOI: 10.4049/jimmunol.2101112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/03/2022] [Indexed: 11/07/2022]
Abstract
Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting β2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced β2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and β2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chunxia G Cronin
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT
| | - Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chengliang Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Jianbin Ruan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; and
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT;
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT;
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| |
Collapse
|
15
|
Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond) 2022; 136:747-769. [PMID: 35621124 DOI: 10.1042/cs20210879] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Pneumonia and its sequelae, acute lung injury, present unique challenges for pulmonary and critical care healthcare professionals, and these challenges have recently garnered global attention due to the ongoing Sars-CoV-2 pandemic. One limitation to translational investigation of acute lung injury, including its most severe manifestation (acute respiratory distress syndrome, ARDS) has been heterogeneity resulting from the clinical and physiologic diagnosis that represents a wide variety of etiologies. Recent efforts have improved our understanding and approach to heterogeneity by defining sub-phenotypes of ARDS although significant gaps in knowledge remain. Improving our mechanistic understanding of acute lung injury and its most common cause, infectious pneumonia, can advance our approach to precision targeted clinical interventions. Here, we review the pathogenesis of pneumonia and acute lung injury, including how respiratory infections and lung injury disrupt lung homoeostasis, and provide an overview of respiratory microbial pathogenesis, the lung microbiome, and interventions that have been demonstrated to improve outcomes-or not-in human clinical trials.
Collapse
|
16
|
Mkorombindo T, Balkissoon R. Journal Club: Biologics and Potential for Immune Modulation in Chronic Obstructive Lung Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:285-297. [PMID: 35487702 PMCID: PMC9166326 DOI: 10.15326/jcopdf.2022.0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Takudzwa Mkorombindo
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama, Birmingham, Alabama, United States
| | | |
Collapse
|
17
|
Filep JG. Targeting Neutrophils for Promoting the Resolution of Inflammation. Front Immunol 2022; 13:866747. [PMID: 35371088 PMCID: PMC8966391 DOI: 10.3389/fimmu.2022.866747] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a localized and self-limited innate host-defense mechanism against invading pathogens and tissue injury. Neutrophils, the most abundant immune cells in humans, play pivotal roles in host defense by eradicating invading pathogens and debris. Ideally, elimination of the offending insult prompts repair and return to homeostasis. However, the neutrophils` powerful weaponry to combat microbes can also cause tissue damage and neutrophil-driven inflammation is a unifying mechanism for many diseases. For timely resolution of inflammation, in addition to stopping neutrophil recruitment, emigrated neutrophils need to be disarmed and removed from the affected site. Accumulating evidence documents the phenotypic and functional versatility of neutrophils far beyond their antimicrobial functions. Hence, understanding the receptors that integrate opposing cues and checkpoints that determine the fate of neutrophils in inflamed tissues provides insight into the mechanisms that distinguish protective and dysregulated, excessive inflammation and govern resolution. This review aims to provide a brief overview and update with key points from recent advances on neutrophil heterogeneity, functional versatility and signaling, and discusses challenges and emerging therapeutic approaches that target neutrophils to enhance the resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
18
|
Dave R, Randhawa G, Kim D, Simpson M, Hoare T. Microgels and Nanogels for the Delivery of Poorly Water-Soluble Drugs. Mol Pharm 2022; 19:1704-1721. [PMID: 35319212 DOI: 10.1021/acs.molpharmaceut.1c00967] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While microgels and nanogels are most commonly used for the delivery of hydrophilic therapeutics, the water-swollen structure, size, deformability, colloidal stability, functionality, and physicochemical tunability of microgels can also offer benefits for addressing many of the barriers of conventional vehicles for the delivery of hydrophobic therapeutics. In this review, we describe approaches for designing microgels with the potential to load and subsequently deliver hydrophobic drugs by creating compartmentalized microgels (e.g., core-shell structures), introducing hydrophobic domains in microgels, leveraging host-guest interactions, and/or applying "smart" environmentally responsive materials with switchable hydrophobicity. In particular, the challenge of promoting hydrophobic drug loading without compromising the inherent advantages of microgels as delivery vehicles and ensuring practically relevant release kinetics from such structures is highlighted, with an eye toward the practical translation of such vehicles to the clinic.
Collapse
Affiliation(s)
- Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gurpreet Randhawa
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Daeun Kim
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Madeline Simpson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
19
|
Hsu AY, Wang T, Syahirah R, Liu S, Li K, Zhang W, Wang J, Cao Z, Tian S, Matosevic S, Staiger CJ, Wan J, Deng Q. Rora Regulates Neutrophil Migration and Activation in Zebrafish. Front Immunol 2022; 13:756034. [PMID: 35309302 PMCID: PMC8931656 DOI: 10.3389/fimmu.2022.756034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil migration and activation are essential for defense against pathogens. However, this process may also lead to collateral tissue injury. We used microRNA overexpression as a platform and discovered protein-coding genes that regulate neutrophil migration. Here we show that miR-99 decreased the chemotaxis of zebrafish neutrophils and human neutrophil-like cells. In zebrafish neutrophils, miR-99 directly targets the transcriptional factor RAR-related orphan receptor alpha (roraa). Inhibiting RORα, but not the closely related RORγ, reduced chemotaxis of zebrafish and primary human neutrophils without causing cell death, and increased susceptibility of zebrafish to bacterial infection. Expressing a dominant-negative form of Rorα or disrupting the roraa locus specifically in zebrafish neutrophils reduced cell migration. At the transcriptional level, RORα regulates transmembrane signaling receptor activity and protein phosphorylation pathways. Our results, therefore, reveal previously unknown functions of miR-99 and RORα in regulating neutrophil migration and anti-microbial defense.
Collapse
Affiliation(s)
- Alan Y. Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
| | - Kailing Li
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University – Purdue University Indianapolis, Indianapolis, IN, United States
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Ziming Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Simon Tian
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University – Purdue University Indianapolis, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
20
|
Auger C, Brunel A, Darbas T, Akil H, Perraud A, Bégaud G, Bessette B, Christou N, Verdier M. Extracellular Vesicle Measurements with Nanoparticle Tracking Analysis: A Different Appreciation of Up and Down Secretion. Int J Mol Sci 2022; 23:ijms23042310. [PMID: 35216426 PMCID: PMC8875573 DOI: 10.3390/ijms23042310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
As is the case with most eucaryotic cells, cancer cells are able to secrete extracellular vesicles (EVs) as a communication means towards their environment and surrounding cells. EVs are represented by microvesicles and smaller vesicles called exosomes, which are known for their involvement in cancer aggressiveness. The release of such EVs requires the intervention of trafficking-associated proteins, mostly represented by the RAB-GTPases family. In particular, RAB27A is known for its role in addressing EVs-to-be secreted towards the the plasma membrane. In this study, shRNAs targeting RAB27A were used in colorectal (CRC) and glioblastoma (GB) cell lines in order to alter EVs secretion. To study and monitor EVs secretion in cell lines’ supernatants, nanoparticle tracking analysis (NTA) was used through the NanoSight NS300 device. Since it appeared that NanoSight failed to detect the decrease in the EVs secretion, we performed another approach to drop EVs secretion (RAB27A-siRNA, indomethacin, Nexihnib20). Similar results were obtained i.e., no variation in EVs concentration. Conversely, NTA allowed us to monitor EVs up-secretion following rotenone treatment or hypoxia conditions. Therefore, our data seemed to point out the insufficiency of using only this technique for the assessment of EVs secretion decrease.
Collapse
Affiliation(s)
- Clément Auger
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
| | - Aude Brunel
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
| | - Tiffany Darbas
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Service d’Oncologie, CHU of Limoges, 2 rue Martin Luther King, 87025 Limoges, France
| | - Hussein Akil
- UMR CNRS 7276/INSERM U1262, Faculté de Médecine, Université de Limoges, 2 rue du Martin Luther King, 87025 Limoges, France;
| | - Aurélie Perraud
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Endocrine, General and Digestive Surgery Department, CHU of Limoges, 2 rue Martin Luther King, 87042 Limoges, France
| | - Gaëlle Bégaud
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Laboratoire de Chimie Analytique, Faculté de Medecine & Pharmacie, 87025 Limoges, France
| | - Barbara Bessette
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
| | - Niki Christou
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Endocrine, General and Digestive Surgery Department, CHU of Limoges, 2 rue Martin Luther King, 87042 Limoges, France
| | - Mireille Verdier
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Correspondence:
| |
Collapse
|
21
|
Lee NK, Kim SN, Park CG. Immune cell targeting nanoparticles: a review. Biomater Res 2021; 25:44. [PMID: 34930494 PMCID: PMC8690904 DOI: 10.1186/s40824-021-00246-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Immune cells are attractive targets for therapy as they are direct participants in a variety of diseases. Delivering a therapeutic agent only to cells that act on a disease by distinguishing them from other cells has the advantage of concentrating the therapeutic effect and lowering systemic side effects. Distinguishing each immune cell from other immune cells to deliver substances, including drugs and genes, can be achieved using nanotechnology. And also nanoparticles can ensure in vivo stability and sustained drug release. In addition, there is an ease of surface modification, which is an important characteristic that can be utilized in targeted drug delivery systems. This characteristic allows us to utilize various properties that are specifically expressed in each immune cell. A number of studies have delivered various substances specifically to immune cells through surface engineering with active target ligands that can target each immune cell and enzyme-responsive coating, and demonstrated high therapeutic effects compared to conventional treatments. Progress in research on target delivery has been suggested to be a breakthrough for the treatments of various diseases, including cancer treatment.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chun Gwon Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
22
|
Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm Sin B 2021; 11:3060-3091. [PMID: 33977080 PMCID: PMC8102084 DOI: 10.1016/j.apsb.2021.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AEC II, alveolar type II epithelial cells
- AM, alveolar macrophages
- ARDS, acute respiratory distress syndrome
- Acute lung injury
- Acute respiratory distress syndrome
- Anti-inflammatory therapy
- BALF, bronchoalveolar lavage fluid
- BSA, bovine serum albumin
- CD, cyclodextrin
- CLP, cecal ligation and perforation
- COVID-19
- COVID-19, coronavirus disease 2019
- DOPE, phosphatidylethanolamine
- DOTAP, 1-diolefin-3-trimethylaminopropane
- DOX, doxorubicin
- DPPC, dipalmitoylphosphatidylcholine
- Drug delivery
- ECM, extracellular matrix
- ELVIS, extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration
- EPCs, endothelial progenitor cells
- EPR, enhanced permeability and retention
- EVs, extracellular vesicles
- EphA2, ephrin type-A receptor 2
- Esbp, E-selectin-binding peptide
- FcgR, Fcγ receptor
- GNP, peptide-gold nanoparticle
- H2O2, hydrogen peroxide
- HO-1, heme oxygenase-1
- ICAM-1, intercellular adhesion molecule-1
- IKK, IκB kinase
- IL, interleukin
- LPS, lipopolysaccharide
- MERS, Middle East respiratory syndrome
- MPMVECs, mouse pulmonary microvascular endothelial cells
- MPO, myeloperoxidase
- MSC, mesenchymal stem cells
- NAC, N-acetylcysteine
- NE, neutrophil elastase
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor-κB
- Nanomedicine
- PC, phosphatidylcholine
- PCB, poly(carboxybetaine)
- PDA, polydopamine
- PDE4, phosphodiesterase 4
- PECAM-1, platelet-endothelial cell adhesion molecule
- PEG, poly(ethylene glycol)
- PEI, polyetherimide
- PEVs, platelet-derived extracellular vesicles
- PLGA, poly(lactic-co-glycolic acid)
- PS-PEG, poly(styrene-b-ethylene glycol)
- Pathophysiologic feature
- RBC, red blood cells
- RBD, receptor-binding domains
- ROS, reactive oxygen species
- S1PLyase, sphingosine-1-phosphate lyase
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC1, syndecan-1
- SORT, selective organ targeting
- SP, surfactant protein
- Se, selenium
- Siglec, sialic acid-binding immunoglobulin-like lectin
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- TPP, triphenylphosphonium cation
- Targeting strategy
- YSA, YSAYPDSVPMMS
- cRGD, cyclic arginine glycine-d-aspartic acid
- iNOS, inducible nitric oxide synthase
- rSPANb, anti-rat SP-A nanobody
- scFv, single chain variable fragments
Collapse
Affiliation(s)
- Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
23
|
Deng Z, Liu S. Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Deliv Transl Res 2021; 11:1475-1497. [PMID: 33860447 PMCID: PMC8048351 DOI: 10.1007/s13346-021-00977-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2021] [Indexed: 12/30/2022]
Abstract
Inflammation is the biological response of immune system to protect living organisms from injurious factors. However, excessive and uncontrolled inflammation is implicated in a variety of devastating chronic diseases including atherosclerosis, inflammatory bowel disease (IBD), and rheumatoid arthritis (RA). Improved understanding of inflammatory response has unveiled a rich assortment of anti-inflammatory therapeutics for the treatment and management of relevant chronic diseases. Notwithstanding these successes, clinical outcomes are variable among patients and serious adverse effects are often observed. Moreover, there exist some limitations for clinical anti-inflammatory therapeutics such as aqueous insolubility, low bioavailability, off-target effects, and poor accessibility to subcellular compartments. To address these challenges, the rational design of inflammation-specific drug delivery systems (DDSs) holds significant promise. Moreover, as compared to normal tissues, inflamed tissue-associated pathological milieu (e.g., oxidative stress, acidic pH, and overexpressed enzymes) provides vital biochemical stimuli for triggered delivery of anti-inflammatory agents in a spatiotemporally controlled manner. In this review, we summarize recent advances in the development of anti-inflammatory DDSs with built-in pathological inflammation-specific responsiveness for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China.
| |
Collapse
|
24
|
Gbian DL, Omri A. Current and novel therapeutic strategies for the management of cystic fibrosis. Expert Opin Drug Deliv 2021; 18:535-552. [PMID: 33426936 DOI: 10.1080/17425247.2021.1874343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cystic fibrosis (CF), is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and affects thousands of people throughout the world. Lung disease is the leading cause of death in CF patients. Despite the advances in treatments, the management of CF mainly targets symptoms. Recent CFTR modulators however target common mutations in patients, alleviating symptoms of CF. Unfortunately, there is still no approved treatments for patients with rare mutations to date.Areas covered: This paper reviews current treatments of CF that mitigate symptoms and target genetic defects. The use of gene and drug delivery systems such as viral or non-viral vectors and nano-compounds to enhance CFTR expression and the activity of antimicrobials against chronic pulmonary infections respectively, will also be discussed.Expert opinion: Nano-compounds tackle biological barriers to drug delivery and revitalize antimicrobials, anti-inflammatory drugs and even genes delivery to CF patients. Gene therapy and gene editing are of particular interest because they have the potential to directly target genetic defects. Nanoparticles should be formulated to more specifically target epithelial cells, and biofilms. Finally, the development of more potent gene vectors to increase the duration of gene expression and reduce inflammation is a promising strategy to eventually cure CF.
Collapse
Affiliation(s)
- Douweh Leyla Gbian
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
25
|
Jun Y, Tang Z, Luo C, Jiang B, Li X, Tao M, Gu H, Liu L, Zhang Z, Sun S, Han K, Yu X, Song X, Tao G, Chen X, Zhang L, Gao Y, Wang QL. Leukocyte-Mediated Combined Targeted Chemo and Gene Therapy for Esophageal Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47330-47341. [PMID: 32997489 DOI: 10.1021/acsami.0c15419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poor prognosis of esophageal cancer is associated with limited clinical treatment efficacy and lack of targeted therapies. With advances in nanomedicine, nanoparticle drug delivery systems play increasingly important roles in tumor treatment by enabling the simultaneous delivery of multiple therapeutic agents. We here propose a novel nanovector for targeted combination gene therapy and chemotherapy in esophageal cancer. A novel lipid nanovector (EYLN) was designed to carry the chemotherapy drug doxorubicin (Dox) and small interfering RNA against the lipid anabolic metabolism gene LPCAT1, which we previously showed to be significantly overexpressed in esophageal cancer tissues, and its interference inhibited the proliferation, invasion, and metastasis of esophageal cancer cells. This vector, EYLN-Dox/siLPCAT1, was further coated with leukocyte membranes to obtain mEYLNs-Dox/siLPCAT1. The particle size of the coated nanovector was approximately 136 nm, and the surface zeta potential was -21.18 mV. Compared with EYLNs-Dox/siLPCAT1, mEYLNs-Dox/siLPCAT1 were more easily internalized by esophageal cancer cells due to the LFA-1 highly expressed leukocyte membrane coating and showed significant inhibition of the proliferation, migration, and metastasis of esophageal cancer cells, along with their LPCAT1 expression, through more effective delivery of the drugs. Moreover, the nanovectors showed improved blood circulation time, tissue distribution, tumor targeting, and tumor suppression in a mouse model. Thus, combining chemo and gene therapy with this new nanodelivery system achieved greater therapeutic efficacy, providing a new strategy for the treatment of esophageal cancer.
Collapse
MESH Headings
- 1-Acylglycerophosphocholine O-Acyltransferase/antagonists & inhibitors
- 1-Acylglycerophosphocholine O-Acyltransferase/genetics
- 1-Acylglycerophosphocholine O-Acyltransferase/metabolism
- Animals
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Cell Proliferation/drug effects
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Carriers/chemistry
- Drug Screening Assays, Antitumor
- Esophageal Neoplasms/diagnostic imaging
- Esophageal Neoplasms/drug therapy
- Esophageal Neoplasms/metabolism
- Female
- Genetic Therapy
- Humans
- Leukocytes/drug effects
- Leukocytes/pathology
- Lipids/chemistry
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nanoparticles/chemistry
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Particle Size
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/pharmacology
- Surface Properties
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yali Jun
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Zhuang Tang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Chao Luo
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Baofei Jiang
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Xiang Li
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Mingyue Tao
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Hao Gu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Lu Liu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Zhengwei Zhang
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Su'An Sun
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Kairong Han
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Xiaojuan Yu
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Xudong Song
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Guoquan Tao
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Xiaofei Chen
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Li Zhang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Yong Gao
- Department of General Surgery, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Qi-Long Wang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, China
| |
Collapse
|
26
|
Nobile S, Nobile L. Nanotechnology and Early Human Development. APPLIED SCIENCES 2020; 10:4323. [DOI: 10.3390/app10124323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of nanotechnology, molecular biotechnologies, and nano-sciences for medical purposes has been termed nanomedicine, a promising growing area of medical research. The aim of this paper is to provide an overview of and discuss nanotechnology applications in the early epochs of life, from transplacental transfer to neonatal/pediatric conditions. Diagnostic and therapeutic applications, mainly related to the respiratory tract, the neurosensory system, and infections, are explored and discussed. Preclinical studies show promising results for a variety of conditions, including for the treatment of pregnancy complications and fetal, neonatal, and pediatric diseases. However, given the complexity of the functions and interactions between the placenta and the fetus, and the complex and incompletely understood determinants of tissue growth and differentiation during early life, there is a need for much more data to confirm the safety and efficacy of nanotechnology in this field.
Collapse
Affiliation(s)
- Stefano Nobile
- Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucio Nobile
- DICAM Department, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
27
|
Giacalone VD, Dobosh BS, Gaggar A, Tirouvanziam R, Margaroli C. Immunomodulation in Cystic Fibrosis: Why and How? Int J Mol Sci 2020; 21:ijms21093331. [PMID: 32397175 PMCID: PMC7247557 DOI: 10.3390/ijms21093331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by unconventional mechanisms of inflammation, implicating a chronic immune response dominated by innate immune cells. Historically, therapeutic development has focused on the mutated cystic fibrosis transmembrane conductance regulator (CFTR), leading to the discovery of small molecules aiming at modulating and potentiating the presence and activity of CFTR at the plasma membrane. However, treatment burden sustained by CF patients, side effects of current medications, and recent advances in other therapeutic areas have highlighted the need to develop novel disease targeting of the inflammatory component driving CF lung damage. Furthermore, current issues with standard treatment emphasize the need for directed lung therapies that could minimize systemic side effects. Here, we summarize current treatment used to target immune cells in the lungs, and highlight potential benefits and caveats of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
- Pulmonary Section, Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| | - Camilla Margaroli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
| |
Collapse
|