1
|
Ober-Reynolds B, Wang C, Ko JM, Rios EJ, Aasi SZ, Davis MM, Oro AE, Greenleaf WJ. Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet 2023; 55:1288-1300. [PMID: 37500727 PMCID: PMC11190942 DOI: 10.1038/s41588-023-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.
Collapse
Affiliation(s)
| | - Chen Wang
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Justin M Ko
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eon J Rios
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Seok J, Cho SD, Lee J, Choi Y, Kim SY, Lee SM, Kim SH, Jeong S, Jeon M, Lee H, Kim AR, Choi B, Ha SJ, Jung I, Yoon KJ, Park JE, Kim JH, Kim BJ, Shin EC, Park SH. A virtual memory CD8 + T cell-originated subset causes alopecia areata through innate-like cytotoxicity. Nat Immunol 2023; 24:1308-1317. [PMID: 37365384 DOI: 10.1038/s41590-023-01547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Virtual memory T (TVM) cells are a T cell subtype with a memory phenotype but no prior exposure to foreign antigen. Although TVM cells have antiviral and antibacterial functions, whether these cells can be pathogenic effectors of inflammatory disease is unclear. Here we identified a TVM cell-originated CD44super-high(s-hi)CD49dlo CD8+ T cell subset with features of tissue residency. These cells are transcriptionally, phenotypically and functionally distinct from conventional CD8+ TVM cells and can cause alopecia areata. Mechanistically, CD44s-hiCD49dlo CD8+ T cells could be induced from conventional TVM cells by interleukin (IL)-12, IL-15 and IL-18 stimulation. Pathogenic activity of CD44s-hiCD49dlo CD8+ T cells was mediated by NKG2D-dependent innate-like cytotoxicity, which was further augmented by IL-15 stimulation and triggered disease onset. Collectively, these data suggest an immunological mechanism through which TVM cells can cause chronic inflammatory disease by innate-like cytotoxicity.
Collapse
Affiliation(s)
- Joon Seok
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeongsoo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yunseo Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Su-Young Kim
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Min Lee
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Hoon Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - A Reum Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Baekgyu Choi
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Inkyung Jung
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- The Center for Epidemic Preparedness, KAIST Institute, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Lee EY, Dai Z, Jaiswal A, Wang EHC, Anandasabapathy N, Christiano AM. Functional interrogation of lymphocyte subsets in alopecia areata using single-cell RNA sequencing. Proc Natl Acad Sci U S A 2023; 120:e2305764120. [PMID: 37428932 PMCID: PMC10629527 DOI: 10.1073/pnas.2305764120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Alopecia areata (AA) is among the most prevalent autoimmune diseases, but the development of innovative therapeutic strategies has lagged due to an incomplete understanding of the immunological underpinnings of disease. Here, we performed single-cell RNA sequencing (scRNAseq) of skin-infiltrating immune cells from the graft-induced C3H/HeJ mouse model of AA, coupled with antibody-based depletion to interrogate the functional role of specific cell types in AA in vivo. Since AA is predominantly T cell-mediated, we focused on dissecting lymphocyte function in AA. Both our scRNAseq and functional studies established CD8+ T cells as the primary disease-driving cell type in AA. Only the depletion of CD8+ T cells, but not CD4+ T cells, NK, B, or γδ T cells, was sufficient to prevent and reverse AA. Selective depletion of regulatory T cells (Treg) showed that Treg are protective against AA in C3H/HeJ mice, suggesting that failure of Treg-mediated immunosuppression is not a major disease mechanism in AA. Focused analyses of CD8+ T cells revealed five subsets, whose heterogeneity is defined by an "effectorness gradient" of interrelated transcriptional states that culminate in increased effector function and tissue residency. scRNAseq of human AA skin showed that CD8+ T cells in human AA follow a similar trajectory, underscoring that shared mechanisms drive disease in both murine and human AA. Our study represents a comprehensive, systematic interrogation of lymphocyte heterogeneity in AA and uncovers a novel framework for AA-associated CD8+ T cells with implications for the design of future therapeutics.
Collapse
Affiliation(s)
- Eunice Y. Lee
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
- Medical Scientist Training Program, Columbia University, New York, NY10032
| | - Zhenpeng Dai
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
| | - Abhinav Jaiswal
- Department of Dermatology, Weill Cornell Medicine, New York, NY10021
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Eddy Hsi Chun Wang
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY10021
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Angela M. Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| |
Collapse
|
4
|
Buket Basmanav F, Betz RC. Recent advances in the genetics of alopecia areata. MED GENET-BERLIN 2023; 35:15-22. [PMID: 38835423 PMCID: PMC10842544 DOI: 10.1515/medgen-2023-2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Alopecia areata (AA) is a common autoimmune-mediated hair loss disorder in humans with an estimated lifetime risk of approximately 2 %. Episodes of hair loss usually begin with isolated hairless patches that may progress to complete hair loss over the entire body. A familial occurrence of AA is well established, with recurrence risks of about 6-8 % in first-degree relatives. AA is a multifactorial disorder involving both environmental and genetic risk factors. Previous research has identified 14 susceptibility loci, most of which implicate genes involved in the immune response. The following review presents a summary of the latest findings from genome-wide association, sequencing and gene expression studies of AA, as well as their contribution to the recent therapeutic developments.
Collapse
Affiliation(s)
- F. Buket Basmanav
- University of BonnInstitute of Human Genetics, Medical Faculty & University Hospital BonnVenusberg Campus 1, Gebäude 1353127BonnDeutschland
| | - Regina C. Betz
- University of BonnInstitute of Human Genetics, Medical Faculty & University Hospital BonnVenusberg Campus 1, Gebäude 1353127BonnDeutschland
| |
Collapse
|
5
|
Xie B, Sun J, Song X. Hair Follicle Melanocytes Initiate Autoimmunity in Alopecia Areata: a Trigger Point. Clin Rev Allergy Immunol 2022; 63:417-430. [PMID: 36121544 DOI: 10.1007/s12016-022-08954-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Alopecia areata (AA) is characterized by common non-scarring alopecia due to autoimmune disorders. To date, the specific pathogenesis underlying AA remains unknown. Thus, AA treatment in the dermatological clinic is still a challenge. Numerous clinical observations and experimental studies have established that melanocytes may be the trigger point that causes hair follicles to be attacked by the immune system. A possible mechanism is that the impaired melanocytes, under oxidative stress, cannot be repaired in time and causes apoptosis. Melanocyte-associated autoantigens are released and presented, inducing CD8+ T cell attacks. Thereafter, amplification of the immune responses further spreads to the entire hair follicle (HF). The immune privilege of HF subsequently collapses, leading to AA. Herein, we present a narrative review on the roles of melanocytes in AA pathogenesis, aiming to provide a better understanding of this disease from the melanocyte's perspective.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Jiayi Sun
- Graduate School, Zhejiang Chinese Medical University, Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Ave 38, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
6
|
Basmanav FB, Betz RC. Translational impact of omics studies in alopecia areata: recent advances and future perspectives. Expert Rev Clin Immunol 2022; 18:845-857. [PMID: 35770930 DOI: 10.1080/1744666x.2022.2096590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alopecia areata (AA) is a non-scarring, hair loss disorder and a common autoimmune-mediated disease with an estimated lifetime risk of about 2%. To date, the treatment of AA is mainly based on suppression or stimulation of the immune response. Genomics and transcriptomics studies generated important insights into the underlying pathophysiology, enabled discovery of molecular disease signatures, which were used in some of the recent clinical trials to monitor drug response and substantiated the consideration of new therapeutic modalities for the treatment of AA such as abatacept, dupilumab, ustekinumab and Janus Kinase (JAK) inhibitors. AREAS COVERED In this review, genomics and transcriptomics studies in AA are discussed in detail with particular emphasis on their past and prospective translational impacts. Microbiome studies are also briefly introduced. EXPERT OPINION The generation of large datasets using the new high-throughput technologies has revolutionized medical research and AA has also benefited from the wave of omics studies. However, the limitations associated with JAK inhibitors and clinical heterogeneity in AA patients underscore the necessity for continuing omics research in AA for discovery of novel therapeutic modalities and development of clinical tools for precision medicine.
Collapse
Affiliation(s)
- F Buket Basmanav
- Medical Faculty & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Regina C Betz
- Medical Faculty & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Jadeja SD, Tobin DJ. Autoantigen Discovery in the Hair Loss Disorder, Alopecia Areata: Implication of Post-Translational Modifications. Front Immunol 2022; 13:890027. [PMID: 35720384 PMCID: PMC9205194 DOI: 10.3389/fimmu.2022.890027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Alopecia areata (AA) is a chronic, multifactorial, polygenic, and heterogeneous disorder affecting growing hair follicles in susceptible individuals, which results in a non-scarring and reversible hair loss with a highly unpredictable course. Despite very considerable research effort, the nature of the precipitating factor(s) responsible for initiating AA in any given hair follicle remains unclear, due largely to significant gaps in our knowledge of the precise sequence of the etiopathogenic events in this dermatosis. However, disease-related changes in the immune-competence of the lower growing hair follicle, together with an active immune response (humoral and cellular) to hair follicle-associated antigens, are key associated phenomena. Confirmation of the hair follicle antigen(s) implicated in AA disease onset has remained stubbornly elusive. While it may be considered somewhat philosophical by some, it is also unclear whether immune-mediated hair loss in AA results from a) an ectopic (i.e., in an abnormal location) immune response to native (unmodified) self-antigens expressed by the healthy hair follicle, b) a normal immune response against modified self-antigens (or neoantigens), or c) a normal immune response against self-antigens (modified/non-modified) that were not previously visible to the immune system (because they were conformationally-hidden or sequestered) but become exposed and presentable in an MHC-I/-II molecule-restricted manner. While some candidate hair follicle antigen target(s) in AA are beginning to emerge, with a potential role for trichohyalin, it is not yet clear whether this represents the initial and immunodominant antigenic focus in AA or is simply one of an expanding repertoire of exposed hair follicle tissue damage-associated antigens that are secondary to the disease. Confirmation of autoantigen identity is essential for our understanding of AA etiopathogenesis, and consequently for developing a more informed therapeutic strategy. Major strides have been made in autoantigen discovery in other autoimmune conditions. In particular, some of these conditions may provide insights into how post-translational modifications (e.g., citrullination, deamidation, etc.) of hair follicle-restricted proteins may increase their antigenicity and so help drive the anti-hair follicle immune attack in AA.
Collapse
Affiliation(s)
- Shahnawaz D. Jadeja
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Connell SJ, Jabbari A. The current state of knowledge of the immune ecosystem in alopecia areata. Autoimmun Rev 2022; 21:103061. [PMID: 35151885 PMCID: PMC9018517 DOI: 10.1016/j.autrev.2022.103061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Alopecia areata (AA) is an autoimmune disease that affects approximately 2% of the general population. Patients with AA most commonly present with one or more patches of hair loss on the scalp in defined circular areas. A fraction of patients progress to more severe forms of the disease, in some cases with involvement of all body surfaces. The healthy anagen stage hair follicle is considered an immune privileged site, described as an environment that suppresses inflammatory immune responses. However, in AA, this immune privileged state collapses and marks the hair follicle as a target for the immune system, resulting in peri- and intrafollicular infiltration by lymphocytes. The complexity of the inflammatory ecosystem of the immune response to the hair follicle, and the relationships between the cellular and soluble participants, in AA remains incompletely understood. Many studies have demonstrated the presence of various immune cells around diseased hair follicles; however, often little is known about their respective contributions to AA pathogenesis. Furthering our understanding of the mechanisms of disease in AA is essential for the novel identification of targeted therapeutics that are efficacious and have few unintended effects.
Collapse
|
9
|
Zou D, Qi J, Wu W, Xu D, Tu Y, Liu T, Zhang J, Li X, Lu F, He L. Applications of Single-Cell Sequencing in Dermatology. Med Sci Monit 2021; 27:e931862. [PMID: 34011922 PMCID: PMC8147034 DOI: 10.12659/msm.931862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell sequencing (SCS) is a promising new technique used to assess the genomics, transcriptomics, epigenetics, and other multi-omics at the single-cell level. In addition to elucidating the immune microenvironment and revealing the pathomechanisms of disease and drug resistance, SCS can profile the actual state of an individual cell and identify a novel cell type and differentiation trajectories, which cannot be achieved by bulk tissue sequencing technique. SCS technique serves as powerful tools to explore more meaningful biomarkers of diagnosis, prognosis, and new therapeutic targets in clinical practice. The SCS technique has been widely applied in the field of dermatology. In this review, we summarize the advances of SCS in dermatology.
Collapse
Affiliation(s)
- Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Tongyun Liu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Xing Li
- Department of Dermatology, People’s Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan, P.R. China
| | - Fengyan Lu
- Qujing Affiliated Hospital of Kunming Medical University and Department of Dermatology, The First People’s Hospital of Qujing, Qujing, Yunnan, P.R. China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|