1
|
Piñeiro-Silva C, Gadea J. Optimization of lipofection protocols for CRISPR/Cas9 delivery in porcine zona pellucida intact oocytes: A study of coincubation duration and reagent efficacy. Theriogenology 2024; 230:121-129. [PMID: 39293174 DOI: 10.1016/j.theriogenology.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
A priority to facilitate the application of lipofection to generate genetically modified porcine embryos and animals will be the use of zona pellucida (ZP)-intact oocytes and zygotes. Recently, our group produced genetically modified embryos by lipofection of ZP-intact oocytes during in vitro fertilization (IVF). This study investigates the effect of two commercial lipofection reagents, Lipofectamine 3000 and Lipofectamine CRISPRMAX, on embryo development and mutation efficiency in ZP-intact porcine oocytes. We compared these reagents with the electroporation method and a control group using two sgRNAs targeting the CAPN3 and CD163 genes. The detrimental effects on cleavage rates were observed in both lipofection treatments compared to the control and electroporated groups. However, blastocyst rates were higher in the Lipofectamine 3000 group than in the electroporated group for both genes. Mutation parameters varied by target gene, with Lipofectamine 3000 achieving higher mutation rates for CD163, while all groups were similar for the CAPN3 gene. Overall efficiency was similar for both lipofectamines, confirming their feasibility for use. In addition, we evaluated the effect of coincubation time (4, 8, and 24 h) on IVF outcomes, embryo development, and mutation parameters. Results indicated that an 8-h coincubation period optimized fertilization and mutation efficiency without significant toxic effects. This study demonstrates that lipofection with either Lipofectamine 3000 or CRISPRMAX during IVF is an effective method for generating genetically modified porcine embryos without the need for specialized equipment or trained personnel, with efficiencies similar to or greater than electroporation. This study also highlights the importance of optimizing reagent selection and coincubation times. There is no difference between Lipofectamine 3000 and CRISPRMAXTM in terms of embryo development and mutation efficiency, and under our experimental conditions, the optimal coincubation time with lipofectamine is 8 h.
Collapse
Affiliation(s)
- Celia Piñeiro-Silva
- University of Murcia Dept. Physiology, Murcia, Spain; International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Joaquín Gadea
- University of Murcia Dept. Physiology, Murcia, Spain; International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
2
|
Fu B, Ma H, Huo X, Zhu Y, Liu D. CRISPR Technology Acts as a Dual-Purpose Tool in Pig Breeding: Enhancing Both Agricultural Productivity and Biomedical Applications. Biomolecules 2024; 14:1409. [PMID: 39595585 PMCID: PMC11591810 DOI: 10.3390/biom14111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Pigs have long been integral to human society for their roles in agriculture and medicine. Consequently, there is an urgent need for genetic improvement of pigs to meet human dual needs for medicine and food. In agriculture, gene editing can improve productivity traits, such as growth rate and disease resistance, which could lower farming costs and benefit consumers through enhanced meat quality. In biomedical research, gene-edited pigs offer invaluable resources as disease models and in xenotransplantation, providing organs compatible with human physiology. Currently, with CRISPR technology, especially the CRISPR/Cas9 system emerging as a transformative force in modern genetics, pigs are not only sources of sustenance but also cornerstones of biomedical innovation. This review aims to summarize the applications of CRISPR/Cas9 technology in developing pigs that serve dual roles in agriculture and biomedical applications. Compared to ZFNs and TALENs, the CRISPR/Cas9 system offers several advantages, including higher efficiency, greater specificity, ease of design and implementation, and the capability to target multiple genes simultaneously, significantly streamlining the process of genetic modifications in complex genomes. Therefore, CRISPR technology supports the enhancement of traits beneficial for agricultural productivity and facilitates applications in medicine. Furthermore, we must acknowledge the inherent deficiencies and technical challenges of the CRISPR/Cas9 technology while also anticipating emerging technologies poised to surpass CRISPR/Cas9 as the next milestones in gene editing. We hypothesize that with the continuous advancements in gene editing technologies and successful integration of traits beneficial to both agricultural productivity and medical applications, the goal of developing dual-purpose pigs for both agricultural and medical use can ultimately be achieved.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Xiupeng Huo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Ying Zhu
- The Breeding Center of Felid of Hengdao He Zi (Heilongjiang), Harbin 150028, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
3
|
Delbreil P, Dhondt S, Kenaan El Rahbani RM, Banquy X, Mitchell JJ, Brambilla D. Current Advances and Material Innovations in the Search for Novel Treatments of Phenylketonuria. Adv Healthc Mater 2024; 13:e2401353. [PMID: 38801163 DOI: 10.1002/adhm.202401353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Phenylketonuria (PKU) is a genetically inherited disease caused by a mutation of the gene encoding phenylalanine hydroxylase (PAH) and is the most common inborn error of amino acid metabolism. A deficiency of PAH leads to increased blood and brain levels of phenylalanine (Phe), which may cause permanent neurocognitive symptoms and developmental delays if untreated. Current management strategies for PKU consist of early detection through neonatal screening and implementation of a restrictive diet with minimal amounts of natural protein in combination with Phe-free supplements and low-protein foods to meet nutritional requirements. For milder forms of PKU, oral treatment with synthetic sapropterin (BH4), the cofactor of PAH, may improve metabolic control of Phe and allow for more natural protein to be included in the patient's diet. For more severe forms, daily injections of pegvaliase, a PEGylated variant of phenylalanine ammonia-lyase (PAL), may allow for normalization of blood Phe levels. However, the latter treatment has considerable drawbacks, notably a strong immunogenicity of the exogenous enzyme and the attached polymeric chains. Research for novel therapies of PKU makes use of innovative materials for drug delivery and state-of-the-art protein engineering techniques to develop treatments which are safer, more effective, and potentially permanent.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | - Sofie Dhondt
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | | | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| | - John J Mitchell
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Québec, H4A 3J1, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
4
|
Mishra G, Srivastava K, Rais J, Dixit M, Kumari Singh V, Chandra Mishra L. CRISPR-Cas9: A Potent Gene-editing Tool for the Treatment of Cancer. Curr Mol Med 2024; 24:191-204. [PMID: 36788695 DOI: 10.2174/1566524023666230213094308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 02/16/2023]
Abstract
The prokaryotic adaptive immune system has clustered regularly interspaced short palindromic repeat. CRISPR-associated protein (CRISPR-Cas) genome editing systems have been harnessed. A robust programmed technique for efficient and accurate genome editing and gene targeting has been developed. Engineered cell therapy, in vivo gene therapy, animal modeling, and cancer diagnosis and treatment are all possible applications of this ground-breaking approach. Multiple genetic and epigenetic changes in cancer cells induce malignant cell growth and provide chemoresistance. The capacity to repair or ablate such mutations has enormous potential in the fight against cancer. The CRISPR-Cas9 genome editing method has recently become popular in cancer treatment research due to its excellent efficiency and accuracy. The preceding study has shown therapeutic potential in expanding our anticancer treatments by using CRISPR-Cas9 to directly target cancer cell genomic DNA in cellular and animal cancer models. In addition, CRISPR-Cas9 can combat oncogenic infections and test anticancer medicines. It may design immune cells and oncolytic viruses for cancer immunotherapeutic applications. In this review, these preclinical CRISPRCas9- based cancer therapeutic techniques are summarised, along with the hurdles and advancements in converting therapeutic CRISPR-Cas9 into clinical use. It will increase their applicability in cancer research.
Collapse
Affiliation(s)
- Gauri Mishra
- Department of Zoology, Swami Shraddhanand College, University of Delhi-110036, Delhi, India
- Division Radiopharmaceuticals and Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Road, Delhi-110054, India
| | - Kamakshi Srivastava
- Department of Zoology, Swami Shraddhanand College, University of Delhi-110036, Delhi, India
| | - Juhi Rais
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | - Manish Dixit
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India
| | - Vandana Kumari Singh
- Department of Zoology, Hansraj College, University of Delhi- 110007, Dehli, India
| | | |
Collapse
|
5
|
Iacono D, Murphy EK, Stimpson CD, Perl DP, Day RM. Low-dose brain radiation: lowering hyperphosphorylated-tau without increasing DNA damage or oncogenic activation. Sci Rep 2023; 13:21142. [PMID: 38036591 PMCID: PMC10689500 DOI: 10.1038/s41598-023-48146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Brain radiation has been medically used to alter the metabolism of cancerous cells and induce their elimination. Rarely, though, brain radiation has been used to interfere with the pathomechanisms of non-cancerous brain disorders, especially neurodegenerative disorders. Data from low-dose radiation (LDR) on swine brains demonstrated reduced levels of phosphorylated-tau (CP13) and amyloid precursor protein (APP) in radiated (RAD) versus sham (SH) animals. Phosphorylated-tau and APP are involved in Alzheimer's disease (AD) pathogenesis. We determined if the expression levels of hyperphosphorylated-tau, 3R-tau, 4R-tau, synaptic, intraneuronal damage, and DNA damage/oncogenic activation markers were altered in RAD versus SH swine brains. Quantitative analyses demonstrated reduced levels of AT8 and 3R-tau in hippocampus (H) and striatum (Str), increased levels of synaptophysin and PSD-95 in frontal cortex (FCtx), and reduced levels of NF-L in cerebellum (CRB) of RAD versus SH swine. DNA damage and oncogene activation markers levels did not differ between RAD and SH animals, except for histone-H3 (increased in FCtx and CRB, decreased in Str), and p53 (reduced in FCtx, Str, H and CRB). These findings confirm the region-based effects of sLDR on proteins normally expressed in larger mammalian brains and support the potential applicability of LDR to beneficially interfere against neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA.
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- Neuroscience Program, Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA.
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, MD, USA.
| | - Erin K Murphy
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Cheryl D Stimpson
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Daniel P Perl
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| |
Collapse
|
6
|
Adlat S, Vázquez Salgado AM, Lee M, Yin D, Wangensteen KJ. Emerging and potential use of CRISPR in human liver disease. Hepatology 2023:01515467-990000000-00538. [PMID: 37607734 PMCID: PMC10881897 DOI: 10.1097/hep.0000000000000578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
CRISPR is a gene editing tool adapted from naturally occurring defense systems from bacteria. It is a technology that is revolutionizing the interrogation of gene functions in driving liver disease, especially through genetic screens and by facilitating animal knockout and knockin models. It is being used in models of liver disease to identify which genes are critical for liver pathology, especially in genetic liver disease, hepatitis, and in cancer initiation and progression. It holds tremendous promise in treating human diseases directly by editing DNA. It could disable gene function in the case of expression of a maladaptive protein, such as blocking transthyretin as a therapy for amyloidosis, or to correct gene defects, such as restoring the normal functions of liver enzymes fumarylacetoacetate hydrolase or alpha-1 antitrypsin. It is also being studied for treatment of hepatitis B infection. CRISPR is an exciting, evolving technology that is facilitating gene characterization and discovery in liver disease and holds the potential to treat liver diseases safely and permanently.
Collapse
Affiliation(s)
- Salah Adlat
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
7
|
Yang SP, Zhu XX, Qu ZX, Chen CY, Wu YB, Wu Y, Luo ZD, Wang XY, He CY, Fang JW, Wang LQ, Hong GL, Zheng ST, Zeng JM, Yan AF, Feng J, Liu L, Zhang XL, Zhang LG, Miao K, Tang DS. Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00763-5. [PMID: 37099179 DOI: 10.1007/s11626-023-00763-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.
Collapse
Affiliation(s)
- Shuai-Peng Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China
| | - Xiang-Xing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| | - Zi-Xiao Qu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China
| | - Cai-Yue Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Yao-Bing Wu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Yue Wu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Zi-Dan Luo
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Xin-Yi Wang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Chu-Yu He
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Jia-Wen Fang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Ling-Qi Wang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Guang-Long Hong
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Shu-Tao Zheng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Jie-Mei Zeng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Ai-Fen Yan
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Juan Feng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Xiao-Li Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Li-Gang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Dong-Sheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| |
Collapse
|
8
|
Chen PR, Uh K, Monarch K, Spate LD, Reese ED, Prather RS, Lee K. Inactivation of growth differentiation factor 9 blocks folliculogenesis in pigs†. Biol Reprod 2023; 108:611-618. [PMID: 36648449 PMCID: PMC10106843 DOI: 10.1093/biolre/ioad005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Growth differentiation factor 9 (GDF9) is a secreted protein belonging to the transforming growth factor beta superfamily and has been well characterized for its role during folliculogenesis in the ovary. Although previous studies in mice and sheep have shown that mutations in GDF9 disrupt follicular progression, the exact role of GDF9 in pigs has yet to be elucidated. The objective of this study was to understand the role of GDF9 in ovarian function by rapidly generating GDF9 knockout (GDF9-/-) pigs by using the CRISPR/Cas9 system. Three single-guide RNAs designed to disrupt porcine GDF9 were injected with Cas9 mRNA into zygotes, and blastocyst-stage embryos were transferred into surrogates. One pregnancy was sacrificed on day 100 of gestation to investigate the role of GDF9 during oogenesis. Four female fetuses were recovered with one predicted to be GDF9-/- and the others with in-frame mutations. All four had fully formed oocytes within primordial follicles, confirming that knockout of GDF9 does not disrupt oogenesis. Four GDF9 mutant gilts were generated and were grown past puberty. One gilt was predicted to completely lack functional GDF9 (GDF9-/-), and the gilt never demonstrated standing estrus and had a severely underdeveloped reproductive tract with large ovarian cysts. Further examination revealed that the follicles from the GDF9-/- gilt did not progress past preantral stages, and the uterine vasculature was less extensive than the control pigs. By using the CRISPR/Cas9 system, we demonstrated that GDF9 is a critical growth factor for proper ovarian development and function in pigs.
Collapse
Affiliation(s)
- Paula R Chen
- United States Department of Agriculture—Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO, USA
| | - Kyungjun Uh
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kaylynn Monarch
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Emily D Reese
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Bhokisham N, Laudermilch E, Traeger LL, Bonilla TD, Ruiz-Estevez M, Becker JR. CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells 2023; 12:cells12081103. [PMID: 37190012 DOI: 10.3390/cells12081103] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
CRISPR-Cas technology has rapidly changed life science research and human medicine. The ability to add, remove, or edit human DNA sequences has transformative potential for treating congenital and acquired human diseases. The timely maturation of the cell and gene therapy ecosystem and its seamless integration with CRISPR-Cas technologies has enabled the development of therapies that could potentially cure not only monogenic diseases such as sickle cell anemia and muscular dystrophy, but also complex heterogenous diseases such as cancer and diabetes. Here, we review the current landscape of clinical trials involving the use of various CRISPR-Cas systems as therapeutics for human diseases, discuss challenges, and explore new CRISPR-Cas-based tools such as base editing, prime editing, CRISPR-based transcriptional regulation, CRISPR-based epigenome editing, and RNA editing, each promising new functionality and broadening therapeutic potential. Finally, we discuss how the CRISPR-Cas system is being used to understand the biology of human diseases through the generation of large animal disease models used for preclinical testing of emerging therapeutics.
Collapse
Affiliation(s)
| | - Ethan Laudermilch
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | - Lindsay L Traeger
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | - Tonya D Bonilla
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | | | - Jordan R Becker
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| |
Collapse
|
10
|
Applying the CRISPR/Cas9 for treating human and animal diseases: a comprehensive review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Recently, genome editing tools have been extensively used in many biomedical sciences. The gene editing system is applied to modify the DNA sequences in the cellular system to comprehend their physiological response. A developing genome editing technology like clustered regularly short palindromic repeats (CRISPR) is widely expended in medical sciences. CRISPR and CRISPR-associated protein 9 (CRISPR/Cas9) system is being exploited to edit any DNA mutations related to inherited ailments to investigate in animals (in vivo) and cell lines (in vitro). Remarkably, CRISPR/Cas9 could be employed to examine treatments of many human genetic diseases such as Cystic fibrosis, Tyrosinemia, Phenylketonuria, Muscular dystrophy, Parkinson’s disease, Retinoschisis, Hemophilia, β-Thalassemia and Atherosclerosis. Moreover, CRISPR/Cas9 was used for disease resistance such as Tuberculosis, Johne’s diseases, chronic enteritis, and Brucellosis in animals. Finally, this review discusses existing progress in treating hereditary diseases using CRISPR/Cas9 technology and the high points accompanying obstacles.
Collapse
|
11
|
Production of Genetically Modified Porcine Embryos via Lipofection of Zona-Pellucida-Intact Oocytes Using the CRISPR/Cas9 System. Animals (Basel) 2023; 13:ani13030342. [PMID: 36766231 PMCID: PMC9913380 DOI: 10.3390/ani13030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The generation of genetically modified pigs has an important impact thanks its applications in basic research, biomedicine, and meat production. Cloning was the first technique used for this production, although easier and cheaper methods were developed, such as the microinjection, electroporation, or lipofection of oocytes and zygotes. In this study, we analyzed the production of genetically modified embryos via lipofection of zona-pellucida-intact oocytes using LipofectamineTM CRISPRMAXTM Cas9 in comparison with the electroporation method. Two factors were evaluated: (i) the increment in the concentration of the lipofectamine-ribonucleoprotein complexes (LRNPC) (5% vs. 10%) and (ii) the concentration of ribonucleoprotein within the complexes (1xRNP vs. 2xRNP). We found that the increment in the concentration of the LRNPC had a detrimental effect on embryo development and a subsequent effect on the number of mutant embryos. The 5% group had a similar mutant blastocyst rate to the electroporation method (5.52% and 6.38%, respectively, p > 0.05). The increment in the concentration of the ribonucleoprotein inside the complexes had no effect on the blastocyst rate and mutation rate, with the mutant blastocyst rate being similar in both the 1xRNP and 2xRNP lipofection groups and the electroporation group (1.75%, 3.60%, and 3.57%, respectively, p > 0.05). Here, we showed that it is possible to produce knock-out embryos via lipofection of zona-pellucida-intact porcine oocytes with similar efficiencies as with electroporation, although more optimization is needed, mainly in terms of the use of more efficient vesicles for encapsulation with different compositions.
Collapse
|
12
|
Flórez JM, Martins K, Solin S, Bostrom JR, Rodríguez-Villamil P, Ongaratto F, Larson SA, Ganbaatar U, Coutts AW, Kern D, Murphy TW, Kim ES, Carlson DF, Huisman A, Sonstegard TS, Lents CA. CRISPR/Cas9-editing of KISS1 to generate pigs with hypogonadotropic hypogonadism as a castration free trait. Front Genet 2023; 13:1078991. [PMID: 36685939 PMCID: PMC9854396 DOI: 10.3389/fgene.2022.1078991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: Most male pigs are surgically castrated to avoid puberty-derived boar taint and aggressiveness. However, this surgical intervention represents a welfare concern in swine production. Disrupting porcine KISS1 is hypothesized to delay or abolish puberty by inducing variable hypogonadotropism and thus preventing the need for castration. Methods: To test this hypothesis, we generated the first KISS1-edited large animal using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides. The targeted region preceded the sequence encoding a conserved core motif of kisspeptin. Genome editors were intracytoplasmically injected into 684 swine zygotes and transferred to 19 hormonally synchronized surrogate sows. In nine litters, 49 American Yorkshire and 20 Duroc liveborn piglets were naturally farrowed. Results: Thirty-five of these pigs bore KISS1-disruptive alleles ranging in frequency from 5% to 97% and did not phenotypically differ from their wild-type counterparts. In contrast, four KISS1-edited pigs (two boars and two gilts) with disruptive allele frequencies of 96% and 100% demonstrated full hypogonadotropism, infantile reproductive tracts, and failed to reach sexual maturity. Change in body weight during development was unaffected by editing KISS1. Founder pigs partially carrying KISS1-disruptive alleles were bred resulting in a total of 53 KISS1 +/+, 60 KISS1 +/-, and 34 KISS1 -/- F1 liveborn piglets, confirming germline transmission. Discussion: Results demonstrate that a high proportion of KISS1 alleles in pigs must be disrupted before variation in gonadotropin secretion is observed, suggesting that even a small amount of kisspeptin ligand is sufficient to confer proper sexual development and puberty in pigs. Follow-on studies will evaluate fertility restoration in KISS1 KO breeding stock to fully realize the potential of KISS1 gene edits to eliminate the need for surgical castration.
Collapse
Affiliation(s)
- Julio M. Flórez
- Acceligen Inc., Eagan, MN, United States,Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Staci Solin
- Recombinetics Inc., Eagan, MN, United States
| | | | | | | | | | | | | | - Doug Kern
- Recombinetics Inc., Eagan, MN, United States
| | - Thomas W. Murphy
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | | | | | - Abe Huisman
- Hypor, Hendrix Genetics, Boxmeer, Netherlands
| | - Tad S. Sonstegard
- Acceligen Inc., Eagan, MN, United States,*Correspondence: Tad S. Sonstegard,
| | - Clay A. Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
13
|
Leal AF, Fnu N, Benincore-Flórez E, Herreño-Pachón AM, Echeverri-Peña OY, Alméciga-Díaz CJ, Tomatsu S. The landscape of CRISPR/Cas9 for inborn errors of metabolism. Mol Genet Metab 2023; 138:106968. [PMID: 36525790 DOI: 10.1016/j.ymgme.2022.106968] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Since its discovery as a genome editing tool, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system has opened new horizons in the diagnosis, research, and treatment of genetic diseases. CRISPR/Cas9 can rewrite the genome at any region with outstanding precision to modify it and further instructions for gene expression. Inborn Errors of Metabolism (IEM) are a group of more than 1500 diseases produced by mutations in genes encoding for proteins that participate in metabolic pathways. IEM involves small molecules, energetic deficits, or complex molecules diseases, which may be susceptible to be treated with this novel tool. In recent years, potential therapeutic approaches have been attempted, and new models have been developed using CRISPR/Cas9. In this review, we summarize the most relevant findings in the scientific literature about the implementation of CRISPR/Cas9 in IEM and discuss the future use of CRISPR/Cas9 to modify epigenetic markers, which seem to play a critical role in the context of IEM. The current delivery strategies of CRISPR/Cas9 are also discussed.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Nidhi Fnu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; University of Delaware, Newark, DE, USA
| | | | | | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Leonova EI, Reshetnikov VV, Sopova JV. CRISPR/Cas-edited pigs for personalized medicine: more than preclinical test-system. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.83872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Novel CRISPR-Cas-based genome editing tools made it feasible to introduce a variety of precise genomic modifications in the pig genome, including introducing multiple edits simultaneously, inserting long DNA sequences into specifically targeted loci, and performing nucleotide transitions and transversions. Pigs serve as a vital agricultural resource and animal model in biomedical studies, given their advantages over the other models. Pigs share high similarities to humans regarding body/organ size, anatomy, physiology, and a metabolic profile. The pig genome can be modified to carry the same genetic mutations found in humans to replicate inherited diseases to provide preclinical trials of drugs. Moreover, CRISPR-based modification of pigs antigen profile makes it possible to offer porcine organs for xenotransplantation with minimal transplant rejection responses. This review summarizes recent advances in endonuclease-mediated genome editing tools and research progress of genome-edited pigs as personalized test-systems for preclinical trials and as donors of organs with human-fit antigen profile.
Graphical abstract:
Collapse
|
15
|
Çınar M, Kılıç Yıldırım G, Kocagil S, Çilingir O. Spectrum of PAH gene mutations and genotype-phenotype correlation in patients with phenylalanine hydroxylase deficiency from Turkey. J Pediatr Endocrinol Metab 2022; 35:639-647. [PMID: 35355500 DOI: 10.1515/jpem-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of our study was to define the genotype-phenotype correlations of mutations in the PAH gene among the Turkey's Central Anatolian region. METHODS Demographic characteristics of 108 patients with hyperphenylalaninemia (HPA) and 94 patients whose diagnosis was confirmed by PAH gene analysis (Sanger DNA Sequence Analysis and Next-Generation Sequencing) were determined retrospectively. Blood phenylalanine levels were analyzed using the high-performance liquid chromatography method. RESULTS Mild HPA-not-requiring-treatment (NT) was found in 50.9% of the patients, and a classical phenylketonuria (PKU) phenotype was found in 25.9%. Forty-seven types of variants were identified. The predominant variants were p.Ala403Val (9.9%), p.Ala300Ser (9.4%), and c.1066-11G>A (splicing) (9.4%). Missense mutations accounted for 68% of mutations and attenuated the clinical impact; splice variations were found in 14.8% of cases with severe features. The p.Thr380Met allele was specific to the mild HPA-NT group. The c.1066-11G>A (splicing) allele was associated with classical PKU, whereas the p.Arg408Trp allele was linked to severe symptoms. Three variations of unknown clinical significance were discovered: c.706+4A>T (splicing), c.843-5T>C (splicing), and p.Thr323=. Of these variants, the patient who was homozygous for the c.843-5T>C (splicing) allele related to the classical PKU phenotype. 70% of the patients who underwent tetrahydrobiopterin (BH4) test were responsive. Phenotypes that responded to BH4 treatment were mostly mild phenotypes. CONCLUSIONS The PAH genotype is the main factor that determines the phenotype of PKU. Establishing the relationship between the identified genetic mutations and phenotypic characteristics will provide very important data for each patient in terms of the specific management style.
Collapse
Affiliation(s)
- Müge Çınar
- Pediatrics, Bozüyük State Hospital, Bilecik, Turkey
| | - Gonca Kılıç Yıldırım
- Department of Paediatrics, Eskisehir Osmangazi University Faculty of Medicine, Division of Child Nutrition and Metabolism, Eskisehir, Turkey
- Eskisehir Osmangazi University Faculty of Medicine, Meselik Campuse, Odunpazari, Turkey
| | - Sinem Kocagil
- Eskisehir Osmangazi University Faculty of Medicine, Meselik Campuse, Odunpazari, Turkey
- Department of Genetics and Genomics Medicine, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Oğuz Çilingir
- Eskisehir Osmangazi University Faculty of Medicine, Meselik Campuse, Odunpazari, Turkey
- Department of Genetics and Genomics Medicine, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
16
|
Song R, Wang Y, Zheng Q, Yao J, Cao C, Wang Y, Zhao J. One-step base editing in multiple genes by direct embryo injection for pig trait improvement. SCIENCE CHINA. LIFE SCIENCES 2022; 65:739-752. [PMID: 35060075 DOI: 10.1007/s11427-021-2013-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 10/19/2022]
Abstract
The precise and simultaneous acquisition of multiple beneficial alleles in the genome is in great demand for the development of elite pig breeders. Cytidine base editors (CBEs) that convert C:G to T:A have emerged as powerful tools for single-nucleotide replacement. Whether CBEs can effectively mediate C-to-T substitution at multiple sites/loci for trait improvement by direct zygote injection has not been verified in large animals. Here, we determined the editing efficiency of four CBE variants in porcine embryonic fibroblast cells and embryos. The findings showed that hA3A-BE3-Y130F and hA3A-eBE-Y130F consistently resulted in increased base-editing efficiency and low toxic effects in embryonic development. Further, we verified that using a one-step approach, direct zygote microinjection of the CBE system can generate pigs harboring multiple point mutations. Our process resulted in a stop codon in CD163 and myostatin (MSTN) and introduced a beneficial allele in insulin-like growth factor-2 (IGF2). The pigs showed disrupted expression of CD163 and MSTN and increased expression of IGF2, which significantly improved growth performance and infectious disease resistance. Our approach allows immediate introduction of multiple mutations in transgene-free animals to comprehensively improve economic traits through direct embryo microinjection, providing a potential new route to produce elite pig breeders.
Collapse
Affiliation(s)
- Ruigao Song
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Yu Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiantao Zheng
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Chunwei Cao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
17
|
Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med 2022; 5:141-152. [PMID: 35343091 PMCID: PMC9043727 DOI: 10.1002/ame2.12223] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
Animal models of human diseases play a critical role in medical research. Pigs are anatomically and physiologically more like humans than are small rodents such as mice, making pigs an attractive option for modeling human diseases. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, and various genetic diseases. We also discuss areas that need to be improved. Animal models of human diseases play a critical role in medical research. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and xenotransplantation.
Collapse
Affiliation(s)
- Naipeng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Chen PR, Uh K, Redel BK, Reese ED, Prather RS, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.826324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating porcine embryos in vitro is a critical process for creating genetically modified pigs as agricultural and biomedical models; however, these embryo technologies have been scarcely applied by the swine industry. Currently, the primary issue with in vitro-produced porcine embryos is low pregnancy rate after transfer and small litter size, which may be exasperated by micromanipulation procedures. Thus, in this review, we discuss improvements that have been made to the in vitro porcine embryo production system to increase the number of live piglets per pregnancy as well as abnormalities in the embryos and piglets that may arise from in vitro culture and manipulation techniques. Furthermore, we examine areas related to embryo production and transfer where improvements are warranted that will have direct applications for increasing pregnancy rate after transfer and the number of live born piglets per litter.
Collapse
|
19
|
Spencer TE, Wells KD, Lee K, Telugu BP, Hansen PJ, Bartol FF, Blomberg L, Schook LB, Dawson H, Lunney JK, Driver JP, Davis TA, Donovan SM, Dilger RN, Saif LJ, Moeser A, McGill JL, Smith G, Ireland JJ. Future of biomedical, agricultural, and biological systems research using domesticated animals. Biol Reprod 2022; 106:629-638. [PMID: 35094055 PMCID: PMC9189970 DOI: 10.1093/biolre/ioac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023] Open
Abstract
Increased knowledge of reproduction and health of domesticated animals is integral to sustain and improve global competitiveness of U.S. animal agriculture, understand and resolve complex animal and human diseases, and advance fundamental research in sciences that are critical to understanding mechanisms of action and identifying future targets for interventions. Historically, federal and state budgets have dwindled and funding for the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) competitive grants programs remained relatively stagnant from 1985 through 2010. This shortage in critical financial support for basic and applied research, coupled with the underappreciated knowledge of the utility of non-rodent species for biomedical research, hindered funding opportunities for research involving livestock and limited improvements in both animal agriculture and animal and human health. In 2010, the National Institutes of Health and USDA NIFA established an interagency partnership to promote the use of agriculturally important animal species in basic and translational research relevant to both biomedicine and agriculture. This interagency program supported 61 grants totaling over $107 million with 23 awards to new or early-stage investigators. This article will review the success of the 9-year Dual Purpose effort and highlight opportunities for utilizing domesticated agricultural animals in research.
Collapse
Affiliation(s)
- Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA,Correspondence: Division of Animal Sciences, University of Missouri, Columbia, MO, USA. Tel: +15738823467; E-mail:
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Bhanu P Telugu
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - LeAnn Blomberg
- The Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705 USA
| | - Lawrence B Schook
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Harry Dawson
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, MD 20705-2350, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center (BARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Ryan N Dilger
- The Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705 USA
| | - Linda J Saif
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - Adam Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - George Smith
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - James J Ireland
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells. Biotechnol Lett 2022; 44:59-76. [PMID: 34997407 DOI: 10.1007/s10529-021-03214-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/28/2021] [Indexed: 12/26/2022]
Abstract
Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9, Adenine base editor (ABE) convert single A·T pairs to G·C pairs in the genome without generating DNA double-strand breaks, and this method has higher accuracy and biosafety in pig genetic modification. However, the application of ABE in pig gene knockout is limited by protospacer-adjacent motif sequences and the base-editing window. Alternative mRNA splicing is an important mechanism underlying the formation of proteins with diverse functions in eukaryotes. Spliceosome recognizes the conservative sequences of splice donors and acceptors in a precursor mRNA. Mutations in these conservative sequences induce exon skipping, leading to proteins with novel functions or to gene inactivation due to frameshift mutations. In this study, adenine base-editing-mediated exon skipping was used to expand the application of ABE in the generation of gene knockout pigs. We first constructed a modified "all-in-one" ABE vector suitable for porcine somatic cell transfection that contained an ABE for single-base editing and an sgRNA expression cassette. The "all-in-one" ABE vector induced efficient sgRNA-dependent A-to-G conversions in porcine cells during single base-editing of multiple endogenous gene loci. Subsequently, an ABE system was designed for single adenine editing of the conservative splice acceptor site (AG sequence at the 3' end of the intron 5) and splice donor site (GT sequence at the 5' end of the intron 6) in the porcine gene GHR; this method achieved highly efficient A-to-G conversion at the cellular level. Then, porcine single-cell colonies carrying a biallelic A-to-G conversion in the splice acceptor site in the intron 5 of GHR were generated. RT-PCR indicated exon 6 skipped at the mRNA level. Western blotting revealed GHR protein loss, and gene sequencing showed no sgRNA-dependent off-target effects. These results demonstrate accurate adenine base-editing-mediated exon skipping and gene knockout in porcine cells. This is the first proof-of-concept study of adenine base-editing-mediated exon skipping for gene regulation in pigs, and this work provides a new strategy for accurate and safe genetic modification of pigs for agricultural and medical applications.
Collapse
|
21
|
Abdelnour SA, Xie L, Hassanin AA, Zuo E, Lu Y. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases. Front Cell Dev Biol 2022; 9:699597. [PMID: 34977000 PMCID: PMC8715006 DOI: 10.3389/fcell.2021.699597] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising innovative technology for genomic editing that offers scientists the chance to edit DNA structures and change gene function. It has several possible uses consisting of editing inherited deficiencies, treating, and reducing the spread of disorders. Recently, reports have demonstrated the creation of synthetic RNA molecules and supplying them alongside Cas9 into genome of eukaryotes, since distinct specific regions of the genome can be manipulated and targeted. The therapeutic potential of CRISPR/Cas9 technology is great, especially in gene therapy, in which a patient-specific mutation is genetically edited, or in the treating of human disorders that are untreatable with traditional treatments. This review focused on numerous, in vivo, in vitro, and ex vivo uses of the CRISPR/Cas9 technology in human inherited diseases, discovering the capability of this versatile in medicine and examining some of the main limitations for its upcoming use in patients. In addition to introducing a brief impression of the biology of the CRISPR/Cas9 scheme and its mechanisms, we presented the utmost recent progress in the uses of CRISPR/Cas9 technology in editing and treating of human genetic diseases.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China.,Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Long Xie
- Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Abdallah A Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Erwei Zuo
- Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Schatten H. Centrosomes in Reproduction. THE CENTROSOME AND ITS FUNCTIONS AND DYSFUNCTIONS 2022; 235:55-73. [DOI: 10.1007/978-3-031-20848-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021; 10:cells10102770. [PMID: 34685749 PMCID: PMC8535139 DOI: 10.3390/cells10102770] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.
Collapse
Affiliation(s)
- Paula R. Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Karl C. Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
24
|
Abstract
Phenylketonuria (PKU; also known as phenylalanine hydroxylase (PAH) deficiency) is an autosomal recessive disorder of phenylalanine metabolism, in which especially high phenylalanine concentrations cause brain dysfunction. If untreated, this brain dysfunction results in severe intellectual disability, epilepsy and behavioural problems. The prevalence varies worldwide, with an average of about 1:10,000 newborns. Early diagnosis is based on newborn screening, and if treatment is started early and continued, intelligence is within normal limits with, on average, some suboptimal neurocognitive function. Dietary restriction of phenylalanine has been the mainstay of treatment for over 60 years and has been highly successful, although outcomes are still suboptimal and patients can find the treatment difficult to adhere to. Pharmacological treatments are available, such as tetrahydrobiopterin, which is effective in only a minority of patients (usually those with milder PKU), and pegylated phenylalanine ammonia lyase, which requires daily subcutaneous injections and causes adverse immune responses. Given the drawbacks of these approaches, other treatments are in development, such as mRNA and gene therapy. Even though PAH deficiency is the most common defect of amino acid metabolism in humans, brain dysfunction in individuals with PKU is still not well understood and further research is needed to facilitate development of pathophysiology-driven treatments.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
| | - Nenad Blau
- University Children's Hospital in Zurich, Zurich, Switzerland
| | - Cary Harding
- Department of Molecular and Medical Genetics and Department of Pediatrics, Oregon Health & Science University, Oregon, USA
| | | | - Nicola Longo
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Annet M Bosch
- University of Amsterdam, Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
26
|
Dobrowolski SF, Phua YL, Sudano C, Spridik K, Zinn PO, Wang Y, Bharathi S, Vockley J, Goetzman E. Phenylalanine hydroxylase deficient phenylketonuria comparative metabolomics identifies energy pathway disruption and oxidative stress. Mol Genet Metab 2021:S1096-7192(21)00686-7. [PMID: 33846068 DOI: 10.1016/j.ymgme.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Abstract
Classical phenylketonuria (PKU, OMIM 261600) owes to hepatic deficiency of phenylalanine hydroxylase (PAH) that enzymatically converts phenylalanine (Phe) to tyrosine (Tyr). PKU neurologic phenotypes include impaired brain development, decreased myelination, early onset mental retardation, seizures, and late-onset features (neuropsychiatric, Parkinsonism). PAH deficiency leads to systemic hyperphenylalaninemia; however, the impact of Phe varies between tissues. To characterize tissue response to hyperphenylalaninemia, metabolomics was applied to tissue from therapy noncompliant classical PKU patients (blood, liver), the Pahenu2 classical PKU mouse (blood, liver, brain) and the PAH deficient pig (blood, liver, brain, cerebrospinal fluid). In blood, liver, and CSF from both patients and animal models over-represented analytes were principally Phe, Phe catabolites, and Phe-related analytes (conjugates, Phe-containing dipeptides). In addition to Phe and Phe-related analytes, the metabolomic profile of PKU brain tissue (mouse, pig) evidenced oxidative stress responses and energy dysregulation. In Pahenu2 and PKU pig brain tissues, anti-oxidative response by glutathione and homocarnosine is apparent. Oxidative stress in Pahenu2 brain was further demonstrated by increased reactive oxygen species. In Pahenu2 and PKU pig brain, an increased NADH/NAD ratio suggests a respiratory chain dysfunction. Respirometry in PKU brain mitochondria (mouse, pig) functionally confirmed reduced respiratory chain activity. Glycolysis pathway analytes are over-represented in PKU brain tissue (mouse, pig). PKU pathologies owe to liver metabolic deficiency; yet, PKU liver tissue (mouse, pig, human) shows neither energy disruption nor anti-oxidative response. Unique aspects of metabolomic homeostasis in PKU brain tissue along with increased reactive oxygen species and respiratory chain deficit provide insight to neurologic disease mechanisms. While some elements of assumed, long standing PKU neuropathology are enforced by metabolomic data (e.g. reduced tryptophan and serotonin representation), energy dysregulation and tissue oxidative stress expand mechanisms underlying neuropathology.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States.
| | - Yu Leng Phua
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Cayla Sudano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Kayla Spridik
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Pascal O Zinn
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Yudong Wang
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Sivakama Bharathi
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Jerry Vockley
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Eric Goetzman
- Division of Medical Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, United States
| |
Collapse
|