1
|
Sheehan K, Jeon H, Corr SC, Hayes JM, Mok KH. Antibody Aggregation: A Problem Within the Biopharmaceutical Industry and Its Role in AL Amyloidosis Disease. Protein J 2025; 44:1-20. [PMID: 39527351 DOI: 10.1007/s10930-024-10237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Due to the large size and rapid growth of the global therapeutic antibody market, there is major interest in understanding the aggregation of protein products as it can compromise efficacy, concentration, and safety. Various production and storage conditions have been identified as capable of inducing aggregation of polyclonal and monoclonal antibody (mAb) therapies such as low pH, freezing, light exposure, lyophilisation and increased ionic strength. The addition of stabilising excipients to these therapeutics helps to combat the formation of aggregates with future aggregation inhibition mechanisms involving the introduction of point mutations and glycoengineering within aggregation prone regions (APRs). Antibody aggregation also plays an integral role in the pathogenesis of a condition known as amyloid light chain (AL) amyloidosis which is characterised by the production of improperly folded and amyloidogenic immunoglobulin light chains (LCs). Current diagnostic tools rely heavily on histological staining with their future moving towards amyloid component identification and proteomic analysis. For many years, treatment options designed for multiple myeloma (MM) have been applied to AL amyloidosis patients by depleting plasma cell numbers. More recently, treatment strategies more specific to this condition have been developed with many designed to recognize amyloid fibrils and trigger their degradation without causing systemic plasma cell cytotoxicity. Amyloid fibrils in AL disease and aggregates in antibody therapeutics are both formed through the oligomerisation of misfolded / modified proteins attempting to reach a thermodynamically stable, free energy minimum that is lower than the respective monomers themselves. Although the final morphologies are different, by understanding the principles underlying such aggregation, we expect to find common insights that may contribute to the development of new and effective methods of antibody aggregation and/or amyloidosis management. We envision that this area of research will continue to be very relevant in both industry and clinical settings.
Collapse
Affiliation(s)
- Kate Sheehan
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Hyesoo Jeon
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Lonza Biologics Tuas Pte. Ltd., 35 Tuas South Ave 6, Singapore, 637377, Republic of Singapore
| | - Sinéad C Corr
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jerrard M Hayes
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - K H Mok
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Ruocco V, Grünwald-Gruber C, Rad B, Tscheliessnig R, Hammel M, Strasser R. Effects of N-glycans on the structure of human IgA2. Front Mol Biosci 2024; 11:1390659. [PMID: 38645274 PMCID: PMC11026580 DOI: 10.3389/fmolb.2024.1390659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
The transition of IgA antibodies into clinical development is crucial because they have the potential to create a new class of therapeutics with superior pathogen neutralization, cancer cell killing, and immunomodulation capacity compared to IgG. However, the biological role of IgA glycans in these processes needs to be better understood. This study provides a detailed biochemical, biophysical, and structural characterization of recombinant monomeric human IgA2, which varies in the amount/locations of attached glycans. Monomeric IgA2 antibodies were produced by removing the N-linked glycans in the CH1 and CH2 domains. The impact of glycans on oligomer formation, thermal stability, and receptor binding was evaluated. In addition, we performed a structural analysis of recombinant IgA2 in solution using Small Angle X-Ray Scattering (SAXS) to examine the effect of glycans on protein structure and flexibility. Our results indicate that the absence of glycans in the Fc tail region leads to higher-order aggregates. SAXS, combined with atomistic modeling, showed that the lack of glycans in the CH2 domain results in increased flexibility between the Fab and Fc domains and a different distribution of open and closed conformations in solution. When binding with the Fcα-receptor, the dissociation constant remains unaltered in the absence of glycans in the CH1 or CH2 domain, compared to the fully glycosylated protein. These results provide insights into N-glycans' function on IgA2, which could have important implications for developing more effective IgA-based therapeutics in the future.
Collapse
Affiliation(s)
- Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Behzad Rad
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rupert Tscheliessnig
- Division of Biophysics, Gottfried-Schatz-Research-Center, Medical University of Graz, Graz, Austria
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Duval A, Caillard S, Frémeaux-Bacchi V. The complement system in IgAN: mechanistic context for therapeutic opportunities. Nephrol Dial Transplant 2023; 38:2685-2693. [PMID: 37385820 DOI: 10.1093/ndt/gfad140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The complement system plays a crucial role in innate immunity, providing essential defense against pathogens. However, uncontrolled or prolonged activation of the complement cascade can significantly contribute to kidney damage, especially in cases of glomerulonephritis. Immunoglobulin A nephropathy (IgAN), the most prevalent form of primary glomerulonephritis, has growing evidence supporting the involvement of complement alternative and lectin pathways. In fact, patients with IgAN experience complement activation within their kidney tissue, which may be involved in the development of glomerular damage and the progression of IgAN. Complement activation has emerged as a significant area of interest in IgAN, with numerous complement-targeting agents currently being explored within this field. Nevertheless, the exact mechanisms of complement activation and their role in IgAN progression require comprehensive elucidation. This review seeks to contextualize the proposed mechanisms of complement activation within the various stages ("hits") of IgAN pathogenesis, while also addressing the clinical implications and anticipated outcomes of complement inhibition in IgAN.
Collapse
Affiliation(s)
- Anna Duval
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
- Department of Nephrology, Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Sophie Caillard
- Department of Nephrology, Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Véronique Frémeaux-Bacchi
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
- Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
4
|
Choa JBD, Sasaki T, Kajiura H, Ikuta K, Fujiyama K, Misaki R. Effects of various disaccharide adaptations on recombinant IgA1 production in CHO-K1 suspension cells. Cytotechnology 2023; 75:219-229. [PMID: 37163134 PMCID: PMC10018586 DOI: 10.1007/s10616-023-00571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/09/2023] [Indexed: 03/28/2023] Open
Abstract
Immunoglobulin A (IgA) has been showing potential as a new therapeutic antibody. However, recombinant IgA suffers from low yield. Supplementation of the medium is an effective approach to improving the production and quality of recombinant proteins. In this study, we adapted IgA1-producing CHO-K1 suspension cells to a high concentration (150 mM) of different disaccharides, namely sucrose, maltose, lactose, and trehalose, to improve the production and quality of recombinant IgA1. The disaccharide-adapted cell lines had slower cell growth rates, but their cell viability was extended compared to the nonadapted IgA1-producing cell line. Glucose consumption was exhausted in all cell lines except for the maltose-adapted one, which still contained glucose even after the 9th day of culturing. Lactate production was higher among the disaccharide-adapted cell lines. The specific productivity of the maltose-adapted IgA1-producing line was 4.5-fold that of the nonadapted line. In addition, this specific productivity was higher than in previous productions of recombinant IgA1 with a lambda chain. Lastly, secreted IgA1 aggregated in all cell lines, which may have been caused by self-aggregation. This aggregation was also found to begin inside the cells for maltose-adapted cell line. These results suggest that a high concentration of disaccharide-supplemented induced hyperosmolarity in the IgA1-producing CHO-K1 cell lines. In addition, the maltose-adapted CHO-K1 cell line benefited from having an additional source of carbohydrate.
Collapse
Affiliation(s)
- John Benson D. Choa
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Tadahiro Sasaki
- grid.136593.b0000 0004 0373 3971Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Hiroyuki Kajiura
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Kazuyoshi Ikuta
- grid.136593.b0000 0004 0373 3971Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- BioAcademia, Inc, 3-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Kazuhito Fujiyama
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- grid.10223.320000 0004 1937 0490Faculty of Science, Osaka University Cooperative Research Station in Southeast Asia (OU:CRS), Mahidol University, Bangkok, Thailand
| | - Ryo Misaki
- grid.136593.b0000 0004 0373 3971International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
- grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
5
|
Jørgensen ACS, Hill CS, Sturrock M, Tang W, Karamched SR, Gorup D, Lythgoe MF, Parrinello S, Marguerat S, Shahrezaei V. Data-driven spatio-temporal modelling of glioblastoma. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221444. [PMID: 36968241 PMCID: PMC10031411 DOI: 10.1098/rsos.221444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.
Collapse
Affiliation(s)
| | - Ciaran Scott Hill
- Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Wenhao Tang
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Saketh R. Karamched
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Dunja Gorup
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Mark F. Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Samuel Marguerat
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
6
|
Ding L, Chen X, Cheng H, Zhang T, Li Z. Advances in IgA glycosylation and its correlation with diseases. Front Chem 2022; 10:974854. [PMID: 36238099 PMCID: PMC9552352 DOI: 10.3389/fchem.2022.974854] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant immunoglobulin synthesized in the human body. It has the highest concentration in the mucosa and is second only to IgG in serum. IgA plays an important role in mucosal immunity, and is the predominant antibody used to protect the mucosal surface from pathogens invasion and to maintain the homeostasis of intestinal flora. Moreover, The binding IgA to the FcαRI (Fc alpha Receptor I) in soluble or aggregated form can mediate anti- or pro- inflammatory responses, respectively. IgA is also known as one of the most heavily glycosylated antibodies among human immunoglobulins. The glycosylation of IgA has been shown to have a significant effect on its immune function. Variation in the glycoform of IgA is often the main characteration of autoimmune diseases such as IgA nephropathy (IgAN), IgA vasculitis (IgAV), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). However, compared with the confirmed glycosylation function of IgG, the pathogenic mechanism of IgA glycosylation involved in related diseases is still unclear. This paper mainly summarizes the recent reports on IgA’s glycan structure, its function, its relationship with the occurrence and development of diseases, and the potential application of glycoengineered IgA in clinical antibody therapeutics, in order to provide a potential reference for future research in this field.
Collapse
|