1
|
Liu X, Wang P, Liu G. NRI and SIRI are the optimal combinations for prognostic risk stratification in patients with non-small cell lung cancer after EGFR-TKI therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03735-7. [PMID: 39304598 DOI: 10.1007/s12094-024-03735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutations. However, NSCLC heterogeneity leads to differences in efficacy; thus, potential biomarkers need to be explored to predict the prognosis of patients. Recently, the prognostic importance of pre-treatment malnutrition and systemic inflammatory response in cancer patients has received increasing attention. METHODS In this study, clinical information from 363 NSCLC patients receiving EGFR-TKI treatment at our clinical center was used for analysis. RESULTS High nutritional risk index (NRI) and systemic inflammation response index (SIRI) were significantly associated with poor overall survival (OS) and progression-free survival (PFS) in NSCLC patients (P < 0.05). Importantly, NRI and SIRI were the best combination models for predicting clinical outcomes of NSCLC patients and independent OS and PFS predictors. Moreover, a nomogram model was constructed by combining NRI/SIRI, sex, smoking history, EGFR mutation, TNM stage, and surgery treatment to visually and personally predict the 1-, 2-, 3-, 4-, and 5-year OS of patients with NSCLC. Notably, risk stratification based on the nomogram model was better than that based on the TNM stage. CONCLUSION NRI and SIRI were the best combination models for predicting clinical outcomes of NSCLC patients receiving EGFR-TKI treatment, which may be a novel biomarker for supplement risk stratification in NSCLC patients.
Collapse
Affiliation(s)
- Xia Liu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Peipei Wang
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China.
| | - Guolong Liu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Huang AL, He YZ, Yang Y, Pang M, Zheng GP, Wang HL. Exploring the potential of the TCR repertoire as a tumor biomarker (Review). Oncol Lett 2024; 28:413. [PMID: 38988449 PMCID: PMC11234811 DOI: 10.3892/ol.2024.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.
Collapse
Affiliation(s)
- An-Li Huang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
- The First Clinical Medical College, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yan-Zhao He
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yong Yang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Min Pang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guo-Ping Zheng
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Hai-Long Wang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
3
|
Shi WJ, Nguyen J, Song W, Wang HY, Lin GY, Fadare O, Lei L. Isolated Monoclonal T-Cell Receptor Gene Rearrangement in a Lung Adenocarcinoma Harboring MET Exon 14 Skipping: Diagnostic Pitfall. Int J Surg Pathol 2024:10668969241266927. [PMID: 39155593 DOI: 10.1177/10668969241266927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In the diagnostic workup of poorly differentiated tumors, T-cell receptor (TCR) clonality has long been considered as evidence of T-cell lymphoma. MET exon 14 skipping (METex14) is a mutation typically seen in lung adenocarcinoma. Herein, we present the first report of METex14 lung adenocarcinoma with isolated monoclonal TCRγ gene rearrangement. A 69-year-old woman presented to an outside hospital with pleural effusions. A pleural decortication demonstrated malignant cells positive for CD30 and CD138 but negative for BerEP4, KRT5, and EMA. An equivocal HHV8 staining was interpreted as positive, leading to the erroneous outside diagnosis of primary effusion lymphoma. Additional workup at our institution revealed a lack of HHV8 and T-cell markers but the presence of TCRγ clonality, pankeratin, and TTF1 expression. Repeat TCRγ testing on the in-house biopsy was negative for clonality. Next-generation sequencing detected METex14, confirming the diagnosis of lung adenocarcinoma. The potential diagnostic pitfall and prognostic/predictive implications are discussed.
Collapse
Affiliation(s)
- Wangpan Jackson Shi
- Department of Pathology and Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Joshua Nguyen
- Department of Pathology and Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Wei Song
- Department of Pathology and Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Huan-You Wang
- Department of Pathology and Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Grace Y Lin
- Department of Pathology and Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Oluwole Fadare
- Department of Pathology and Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| | - Li Lei
- Department of Pathology and Laboratory Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Zhao L, Ren Y, Zhang G, Zheng K, Wang J, Sha H, Zhao M, Huang R, Kang D, Su X, Wu Y, Zhang W, Lai R, Li L, Mei R, Wang Y, Tian Y, Wang F, Liu B, Zou Z. Single-arm study of camrelizumab plus apatinib for patients with advanced mucosal melanoma. J Immunother Cancer 2024; 12:e008611. [PMID: 38908858 PMCID: PMC11328654 DOI: 10.1136/jitc-2023-008611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Previous studies have suggested the potential synergistic antitumor activity when combining immune checkpoint inhibitors with anti-angiogenic agents in various solid tumors. We aimed to assess the efficacy and safety of camrelizumab (a humanized programmed cell death-1 antibody) plus apatinib (a vascular endothelial growth factor receptor tyrosine kinase inhibitor) for patients with advanced mucosal melanoma (MM), and explore-related biomarkers. METHODS We conducted a single-center, open-label, single-arm, phase II study. Patients with unresectable or recurrent/metastatic MM received camrelizumab and apatinib. The primary endpoint was the confirmed objective response rate (ORR). RESULTS Between April 2019 and June 2022, 32 patients were enrolled, with 50.0% previously received systemic therapy. Among 28 patients with evaluable response, the confirmed ORR was 42.9%, the disease control rate was 82.1%, and the median progression-free survival (PFS) was 8.05 months. The confirmed ORR was 42.9% (6/14) in both treatment-naïve and previously treated patients. Notably, treatment-naïve patients had a median PFS of 11.89 months, and those with prior treatment had a median PFS of 6.47 months. Grade 3 treatment-related adverse events were transaminase elevation, rash, hyperbilirubinemia, proteinuria, hypertension, thrombocytopenia, hand-foot syndrome and diarrhea. No treatment-related deaths were observed. Higher tumor mutation burden (TMB), increased T-cell receptor (TCR) diversity, and altered receptor tyrosine kinase (RTK)/RAS pathway correlated with better tumor response. CONCLUSION Camrelizumab plus apatinib provided promising antitumor activity with acceptable toxicity in patients with advanced MM. TMB, TCR diversity and RTK/RAS pathway genes were identified as potential predictive biomarkers and warrant further validation. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry, ChiCTR1900023277.
Collapse
Affiliation(s)
- Lianjun Zhao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yu Ren
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Guiying Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kelin Zheng
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayu Wang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huizi Sha
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Mengke Zhao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Rong Huang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Donglin Kang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xinyu Su
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yirong Wu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wangling Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruihe Lai
- Department of Nuclear Medicine of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lin Li
- Department of Pathology of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Mei
- Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Yitao Wang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - You Tian
- Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Fufeng Wang
- Geneseeq Research institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Tang H, Wu H, Jian Y, Ji T, Wu B, Wu Y, Wang P, Cao T. Immune effector dysfunction signatures predict outcomes in patients with colorectal cancer. Int Immunopharmacol 2024; 132:111949. [PMID: 38552290 DOI: 10.1016/j.intimp.2024.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Immune effector dysfunction (IED) is mainly manifested as immune exhaustion and senescence, which are the primary obstacles to the success of cancer immunotherapy. In the current study, we characterized the prognostic relevance of IED signatures in patients with colorectal cancer (CRC). METHODS Immunohistochemistry (IHC) data of CRC tissue samples from 41 newly diagnosed patients in our clinical center (HDPH cohort) were used to investigate the prognostic importance of IED signatures. The results were validated by the RNA sequencing data of 372 CRC patients from the Cancer Genome Atlas (TCGA) database. RESULTS In the HDPH cohorts, high Natural Killer (NK) and CD8+ tumor-infiltrating lymphocytes (TILs) were associated with poor overall survival (OS) and relapse-free survival (RFS) in CRC patients. Optimal IED signatures, including high expression of CCR9, ISG20, and low expression of ICOS, and CACNA2D2, predicted poor OS and RFS. Moreover, high-risk scores estimated by a weighted combination of these four IED genes were associated with poor OS and RFS. Notably, risk stratification was constructed by combining risk score and tumor node metastasis (TNM) stage better than TNM stage alone in predicting OS and RFS for CRC patients. The above results were confirmed in the TCGA cohort. CONCLUSION CCR9, ISG20, ICOS, and CACNA2D2 were optimal IED signatures for predicting the outcomes of CRC patients, which might be a potential biomarker for prognostic stratification and designing novel CRC therapy.
Collapse
Affiliation(s)
- Haifeng Tang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China
| | - Hongsheng Wu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China
| | - Yueju Jian
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China
| | - Tengfei Ji
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China
| | - Biwen Wu
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yong Wu
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| | - Peipei Wang
- Department of Oncology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China; School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China.
| | - Tiansheng Cao
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China; Department of General Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510810, China.
| |
Collapse
|
6
|
Pan S, Cai Q, Wei Y, Tang H, Zhang Y, Zhou W, Deng T, Mo W, Wang S, Wang C, Chen C. Increased co-expression of ICOS and PD-1 predicts poor overall survival in patients with acute myeloid leukemia. Immunobiology 2024; 229:152804. [PMID: 38615511 DOI: 10.1016/j.imbio.2024.152804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Inducible co-stimulatory factor (ICOS) has a dual role: activating cytotoxic T cells against tumors or exacerbating immunosuppression of regulatory T cells (Tregs) to participate in immune evasion. However, the correlation between ICOS and its co-expression with inhibitory immune checkpoints (IICs) and prognosis in acute myeloid leukemia (AML) is little known. METHODS The prognostic importance of ICOS and IICs in 62 bone marrow (BM) samples of de novo AML patients from our clinical center (GZFPH) was explored and then the RNA sequencing data of 155 AML patients from the Cancer Genome Atlas (TCGA) database was used for validation. RESULTS In both GZFPH and TCGA cohorts, high expression of ICOS was significantly associated with poor overall survival (OS) in patients with AML (P < 0.05). Importantly, co-expression of ICOS and PD-1, PD-L1, PD-L2, CTLA-4, and LAG-3 predicted poor OS in AML; among them, ICOS/PD-1 was the optimal combination of immune checkpoints (ICs). The co-expression of ICOS and PD-1 was correlated with poor OS in non-acute promyelocytic leukemia (non-APL) patients following chemotherapy. Additionally, ICOS/PD-1 was an independent OS-predicting factor (P < 0.05). Notably, a nomogram model was constructed by combining ICOS/PD-1, age, European Leukemia Net (ELN) risk stratification, and therapy to visually and personalized predict the 1-, 3-, and 5-year OS of patients with non-APL. CONCLUSION Increased expression of ICOS predicted poor outcomes, and ICOS/PD-1 was the optimal combination of ICs to predict outcomes in patients with AML, which might be a potential immune biomarker for designing novel AML therapy.
Collapse
Affiliation(s)
- Shiyi Pan
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Qinghua Cai
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yiqiong Wei
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Haifeng Tang
- Department of Surgery, The Third School of Clinical Medicine, Southern Medical University, Guangzhou 516006, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
7
|
Fitri NK, Nainggolan BWM, Firsty NN, Pradana A, Sari DK. The Addition of Atezolizumab to Chemotherapy in Non-Small Cell Lung Cancer: A Trial-Based Review and Meta-Analysis. World J Oncol 2024; 15:72-80. [PMID: 38274722 PMCID: PMC10807920 DOI: 10.14740/wjon1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) stands as one of the most prevalent types of cancer worldwide, driving extensive research in oncologic therapeutic approaches. Atezolizumab, among the treatments under scrutiny, is undergoing evaluation as a potential first-line therapy for NSCLC. This review aims to assess the efficacy of atezolizumab in treating patients with NSCLC and to shed light on the ongoing quest for the most effective treatment. Methods Multiple scientific databases, including PubMed, Cochrane, and ScienceDirect, were consulted. The literature identification utilized the strategic Boolean term method of keywords relating to "non-small cell lung cancer" and "atezolizumab" to suggest the analyzed population in our review without restricting the potential outcomes. The primary inclusion criterion is clinical studies that attempted to determine the efficacy of atezolizumab in NSCLC patients. Results We included four trials to be analyzed in the final analysis, which we stratified into the programmed cell death-ligand 1 (PD-L1) expressivity status aside from the pooled intention-to-treat (ITT) population. We found the addition of atezolizumab may significantly improve the overall survival (OS) in the respective arm, remarkably among the high PD-L1 expression group (TC3 or IC3). The result of our meta-analysis presented the pooled OS of 0.79 (0.72, 0.87) in 95% confidence interval (CI) with a P value of < 0.05. Sub-analysis of the PD-L1's expression revealed TC3 population benefits the most (hazard ratio (HR): 0.55, 95% CI (0.42, 0.73)), compared to low (HR: 0.80, 95% CI (0.68, 0.93)) and negative expression (HR: 0.79, 95% CI (0.68, 0.93)); which is statistically meaningful (P < 0.05). Similar result was also observed in progression-free survival (PFS) analysis with the HR value of 0.63 (0.55, 0.72), with P value of < 0.05, favoring atezolizumab arm. Conclusions Upon examination, the study reveals that the addition of atezolizumab demonstrates notable improvements in both OS and PFS among NSCLC patients. These findings present promising attributes for atezolizumab as a viable treatment for NSCLC. However, it is important to acknowledge that the future holds further revelations in this realm, and more insights are yet to be uncovered.
Collapse
Affiliation(s)
| | | | | | - Andika Pradana
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Dina Keumala Sari
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
8
|
Che R, Wang Q, Li M, Shen J, Ji J. Quantitative Proteomics of Tissue-Infiltrating T Cells From CRC Patients Identified Lipocalin-2 Induces T-Cell Apoptosis and Promotes Tumor Cell Proliferation by Iron Efflux. Mol Cell Proteomics 2024; 23:100691. [PMID: 38072118 PMCID: PMC10792491 DOI: 10.1016/j.mcpro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024] Open
Abstract
T cells play the most pivotal roles in antitumor immunity; the T-cell proteome and the differentially expressed proteins in the tumor immune microenvironment have rarely been identified directly from the clinical samples, especially for tumors that lack effective immunotherapy targets, such as colorectal cancer (CRC). In this study, we analyzed the protein expression pattern of the infiltrating T cells isolated from CRC patients using quantitative proteomics. CD4+ and CD8+ T cells were isolated from clinical samples and labeled by tandem mass tag reagents, and the differentially expressed proteins were quantified by mass spectrometry. The T-cell proteome profiling revealed dysfunctions in these tumor-infiltrating T cells. Specifically, antitumor immunity was suppressed because of differentially expressed metal ion transporters and immunity regulators. For the first time, lipocalin-2 (LCN2) was shown to be significantly upregulated in CD4+ T cells. Quantitative proteomic analysis of LCN2-overexpressed Jurkat cells showed that LCN2 damaged T cells by changes in iron transport. LCN2 induced T-cell apoptosis by reducing cellular iron concentration; moreover, the iron that was transported to the tumor microenvironment aided tumor cell proliferation, promoting tumor development. Meanwhile, LCN2 also influenced tumor progression through immune cytokines and cholesterol metabolism. Our results demonstrated that LCN2 has immunosuppressive functions that can promote tumor development; therefore, it is a potential immunotherapy target for CRC.
Collapse
Affiliation(s)
- Rui Che
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Minzhe Li
- General Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jian Shen
- General Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Chen C, Zhang Y, Lu D, Zhang Z, Yang J, Chen X, Zhou M, Mo W, Wang C, Cai Q, Li Y, Zhou R, Xu S, Zhou W, Deng T, Pan S, Xu Y, Wang S, Zhang Y. Predictive value of T cell receptor repertoire profiling for immunosuppressive therapy in severe aplastic anemia. Genes Dis 2024; 11:95-98. [PMID: 37588190 PMCID: PMC10425835 DOI: 10.1016/j.gendis.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 08/18/2023] Open
Affiliation(s)
- Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yuling Zhang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Dongpei Lu
- Guangzhou Junruikang Biotechnology Co., Ltd, Guangzhou, Guangdong 510700, China
| | - Zelong Zhang
- Guangzhou Junruikang Biotechnology Co., Ltd, Guangzhou, Guangdong 510700, China
| | - Jun Yang
- Guangzhou Junruikang Biotechnology Co., Ltd, Guangzhou, Guangdong 510700, China
| | - Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Qinghua Cai
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yumiao Li
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ruiqing Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Shilin Xu
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Shiyi Pan
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yanli Xu
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| |
Collapse
|
10
|
Chen C, Huang L, Chen Z, Ou Q, Liu S, Jiang X, Chen F, Wei X, Guo H, Shao Y, Zeng C, Li Y, Li W. Higher 13-Gene-Estimated TMB Detected from Plasma ctDNA is Associated with Worse Outcome for T-Cell Lymphoma Patients. Adv Biol (Weinh) 2023; 7:e2300042. [PMID: 37658484 DOI: 10.1002/adbi.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Indexed: 09/03/2023]
Abstract
Exome sequencing of in situ tumor samples reveals that mutated genes can predict the prognosis of patients with T-cell lymphoma (TCL). However, how tumor mutation burden (TMB) derived from circulating tumor DNA (ctDNA) may stratify TCL patients remains unclear.The plasma ctDNA of 79 newly diagnosed TCL patients from the clinical center is used for targeted exome sequencing, and the exome data of 4035 TCL patients from the Catalogue of Somatic Mutations in Cancer (COSMIC) database is obtained for comparison analysis.TCL patients with higher TMB, as evaluated with a panel of 120 genes (panel-TMB120), are associated with poor prognosis. More importantly, COX regression analysis identifies a subset of 13 genes in panel-TMB120, including AP3B1 (Adaptor related protein complex 3 subunit beta 1), ATM (Ataxia-telangiectasia mutated), BCL6 (B cell lymphoma 6), BRAF (B-Raf proto-oncogene, serine/threonine kinase), CDKN2B (Cyclin dependent kinase inhibitor 2B), EPCAM (Epithelial cell adhesion molecule), FBXO11 (F-box protein 11), JAK1 (Janus kinase 1), MDM2 (Murine double minute 2), NF1 (Neurofibromin 1), STAT5B (Signal transducer and activator of transcription 5B), STAT6 (Signal transducer and activator of transcription 6), and TET2 (Tet methylcytosine dioxygenase 2), which are significantly associated with prognosis. Specifically, higher TMB values calculated with these 13 genes (panel-TMB13) are able to significantly predict unfavorable prognosis for these patients. Together, panel-TMB13 and the International Prognostic Index (IPI) are used for risk stratification.Panel-TMB13 is identified, which can predict poor prognosis for TCL patients carrying higher panel-TMB13 scores and suggest that panel-TMB13 may be a potential biomarker for supplement risk stratification of TCL patients.
Collapse
Affiliation(s)
- Cunte Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Ling Huang
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510180, P. R. China
| | - Zheng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, P. R. China
| | - Sichu Liu
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510180, P. R. China
| | - Xinmiao Jiang
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510180, P. R. China
| | - Feili Chen
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510180, P. R. China
| | - Xiaojuan Wei
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510180, P. R. China
| | - Hanguo Guo
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510180, P. R. China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, P. R. China
- School of Public Health, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, P. R. China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, P. R. China
| | - Wenyu Li
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510180, P. R. China
| |
Collapse
|
11
|
Wang P, Zhang Y, Cai Q, Long Q, Pan S, Zhou W, Deng T, Mo W, Wang S, Zhang Y, Wang C, Chen C. Optimal combination of immune checkpoint and senescence molecule predicts adverse outcomes in patients with acute myeloid leukemia. Ann Med 2023; 55:2201507. [PMID: 37070487 PMCID: PMC10120552 DOI: 10.1080/07853890.2023.2201507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND High expression of immune checkpoints (ICs) and senescence molecules (SMs) contributes to T cell dysfunction, tumor escape, and progression, but systematic evaluation of them in co-expression patterns and prognosis in acute myeloid leukemia (AML) was lacking. METHODS Three publicly available datasets (TCGA, Beat-AML, and GSE71014) were first used to explore the effect of IC and SM combinations on prognosis and the immune microenvironment in AML, and bone marrow samples from 68 AML patients from our clinical center (GZFPH) was further used to validate the findings. RESULTS High expression of CD276, Bcl2-associated athanogene 3 (BAG3), and SRC was associated with poor overall survival (OS) of AML patients. CD276/BAG3/SRC combination, standard European Leukemia Net (ELN) risk stratification, age, and French-American-British (FAB) subtype were used to construct a nomogram model. Interestingly, the new risk stratification derived from the nomogram was better than the standard ELN risk stratification in predicting the prognosis for AML. A weighted combination of CD276 and BAG3/SRC positively corrected with TP53 mutation, p53 pathway, CD8+ T cells, activated memory CD4+ T cells, T-cell senescence score, and Tumor Immune Dysfunction and Exclusion (TIDE) score estimated by T-cell dysfunction. CONCLUSION High expression of ICs and SMs was associated with poor OS of AML patients. The co-expression patterns of CD276 and BAG3/SRC might be potential biomarkers for risk stratification and designing combinational immuno-targeted therapy in AML.Key MessagesHigh expression of CD276, BAG3, and SRC was associated with poor overall survival of AML patients.The co-expression patterns of CD276 and BAG3/SRC might be potential biomarkers for risk stratification and designing combinational immuno-targeted therapy in AML.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R. China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, P.R. China
| | - Yuling Zhang
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Qinghua Cai
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Qingqin Long
- Department of Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R. China
| | - Shiyi Pan
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
- Yuping Zhang Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou510180, P.R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
- Caixia Wang
| | - Cunte Chen
- Department of Hematology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R.China
- CONTACT Cunte Chen
| |
Collapse
|
12
|
Chen C, Huang L, Liu S, Jiang X, Chen F, Wei X, Guo H, Zeng X, Zeng C, Przybylski GK, Li W, Li Y. T-cell lymphoma patient harboring BCL11B mutations had favorable overall survival. Asia Pac J Clin Oncol 2023. [PMID: 37635422 DOI: 10.1111/ajco.14000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Molecular genetics serve a critical role in constructing risk stratification for hematological malignancies, but T-cell lymphoma (TCL) still lacks molecular genetic information for supplement risk stratification in predicting the prognosis of TCL patients. In the present study, we characterized the mutation patterns of B-cell leukemia/lymphoma 11B gene (BCL11B) and its prognostic importance in TCL patients. METHODS BCL11B mutations were characterized based on the data from two datasets, one is from our clinical center (GDPH dataset, n = 79) and the other is from COSMIC dataset (n = 154). RESULTS The overall mutation rate of BCL11B was 6.4% (15/233) in TCL, and there were no hotspot mutation sites in TCL. Among these mutations, the missense and splice site mutation were significantly prominent. Moreover, TCL patients harboring BCL11B mutations had a favorable overall survival (OS) in our center (GDPH dataset) (adjusted hazard ratio [HR] = .001, p = 0.109), although there were not yet significantly statistical at this point. In addition, TCL patients harboring BCL11B mutation had a longer 5-year restricted mean survival time (RMST) than those without a BCL11B mutation (60 vs. 32 months). Notably, BCL11B mutations were not associated with TCL entities having better prognosis. CONCLUSIONS BCL11B mutations were associated with favorable clinical outcome for TCL patients; it might be considered as a novel biomarker for TCL prognostic stratification.
Collapse
Affiliation(s)
- Cunte Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Ling Huang
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Sichu Liu
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinmiao Jiang
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Feili Chen
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaojuan Wei
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hanguo Guo
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | | | - Wenyu Li
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Wang P, Zhu J, Long Q, Wang Y, Xu H, Tao H, Wu B, Li J, Wu Y, Liu S. LncRNA SATB2-AS1 promotes tumor growth and metastasis and affects the tumor immune microenvironment in osteosarcoma by regulating SATB2. J Bone Oncol 2023; 41:100491. [PMID: 37601080 PMCID: PMC10436287 DOI: 10.1016/j.jbo.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Our previous report has identified a lncRNA SATB2-AS1, which was significantly up-regulated in osteosarcoma tissue and promotes the proliferation of osteosarcoma cells in vitro. However, the mechanisms of SATB2-AS1 regulating the growth and metastasis of osteosarcoma cells in vivo and its role in the prognosis of osteosarcoma patients are still unclear. In this study, the transcriptome sequencing data of 87 patients with osteosarcoma from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and 7 patients from our clinical center (GZFPH) was used to evaluate the importance of SATB2-AS1 and SATB2 on the prognosis. The effect of SATB2-AS1 on the growth and metastasis of osteosarcoma cells in vivo was verified by a mouse tumor model. The potential mechanisms of SATB2-AS1 regulating SATB2 were further explored by dual-luciferase reporter gene assay, RNA pull-down assay, and bioinformatics analysis. The results suggested that increased co-expression of SATB2-AS1 and SATB2 was significantly associated with poor overall survival (OS) and relapse-free survival (RFS), and was a biomarker for risk stratification in patients with osteosarcoma. Mechanistically, SATB2-AS1 promotes tumor growth and lung metastasis by regulating SATB2 in vivo. SATB2-AS1 directly binds to POU3F1 for mediating SATB2 expression in MNNG/HOS cells. In addition, SATB2-AS1 and SATB2 might be potential immunomodulators for negatively affecting immune cell infiltration by the IL-17 signaling pathway. In summary, SATB2-AS1 promoted tumor cell growth and lung metastasis by activating SATB2, thereby associated with poor prognosis in patients with osteosarcoma, which indicated that SATB2-AS1 and SATB2 might be novel biomarkers for risk stratification and promising therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Oncology, the Second Affiliated Hospital, and School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jianwei Zhu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Qingqin Long
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yan Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Huihua Xu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Huimin Tao
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Biwen Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jiajun Li
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| | - Sihong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China
- Guangzhou First People’s Hospital, Guangzhou, Guangdong 510180, PR China
| |
Collapse
|
14
|
Liu SYM, Chen C, Zhang YK, Zhong WZ, Wu YL, Liu SY, Li Y. Specific TCR profiles predict clinical outcome of adjuvant EGFR-TKIs for resected EGFR-mutant non-small cell lung cancer. Biomark Res 2023; 11:26. [PMID: 36879350 PMCID: PMC9990191 DOI: 10.1186/s40364-023-00470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND ADJUVANT-CTONG1104 reported a favorable survival outcome from adjuvant gefitinib treatment over chemotherapy in EGFR-mutant non-small cell lung cancer (NSCLC) patients. However, heterogeneous benefit from EGFR-TKIs and chemotherapy demands further biomarker exploration for patient selection. Previously, we identified certain TCR sequences with predictive value for adjuvant therapies from the CTONG1104 trial and found a relationship between the TCR repertoire and genetic variations. It remains unknown which TCR sequences could further enhance the prediction for only adjuvant EGFR-TKI. METHODS In this study, 57 tumor and 12 tumor-adjacent samples, respectively, from gefitinib-treated patients in the CTONG1104 were collected for TCR β gene sequencing. We attempted to constitute a predictive model for prognosis and favorable adjuvant EGFR-TKI outcome for patients with early-stage NSCLC and EGFR mutations. RESULTS The TCR rearrangements demonstrated significant prediction for overall survival (OS). A combined model of high frequent Vβ7-3Jβ2-5 and Vβ24-1Jβ2-1 with lower frequent Vβ5-6Jβ2-7 and Vβ28Jβ2-2 constituted the best value for predicting OS (P < 0.001; Hazard Ratio [HR] = 9.65, 95% confidence interval [CI]: 2.27 to 41.12) or DFS (P = 0.02; HR = 2.61, 95% CI: 1.13 to 6.03). In Cox regression analyses, when multiple clinical data were included, the risk score remained an independent prognostic predictor for OS (P = 0.003; HR = 9.49; 95% CI: 2.21 to 40.92) and DFS (P = 0.015; HR = 3.13; 95% CI: 1.25 to 7.87). CONCLUSIONS In this study, a predictive model was constituted with specific TCR sequences for prognosis prediction and gefitinib benefit in the ADJUVANT-CTONG1104 trial. We provide a potential immune biomarker for EGFR-mutant NSCLC patients who might benefit from an adjuvant EGFR-TKI.
Collapse
Affiliation(s)
- Si-Yang Maggie Liu
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Cunte Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yi-Kai Zhang
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yangqiu Li
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Erlotinib versus gemcitabine plus cisplatin as neoadjuvant treatment of stage IIIA-N2 EGFR-mutant non-small-cell lung cancer: final overall survival analysis of the EMERGING-CTONG 1103 randomised phase II trial. Signal Transduct Target Ther 2023; 8:76. [PMID: 36823150 PMCID: PMC9950485 DOI: 10.1038/s41392-022-01286-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 02/25/2023] Open
Abstract
EMERGING-CTONG 1103 showed improved progression-free survival (PFS) with neoadjuvant erlotinib vs. chemotherapy for patients harbouring EGFR sensibility mutations and R0 resected stage IIIA-N2 non-small cell lung cancer (NSCLC) (NCT01407822). Herein, we report the final results. Recruited patients were randomly allocated 1:1 to the erlotinib group (150 mg/day orally; neoadjuvant phase for 42 days and adjuvant phase to 12 months) or to the GC group (gemcitabine 1250 mg/m2 plus cisplatin 75 mg/m2 intravenously; 2 cycles in neoadjuvant phase and 2 cycles in adjuvant phase). Objective response rate (ORR), complete pathologic response (pCR), PFS, and overall survival (OS) were assessed along with safety. Post hoc analysis was performed for subsequent treatments after disease recurrence. Among investigated 72 patients (erlotinib, n = 37; GC, n = 35), the median follow-up was 62.5 months. The median OS was 42.2 months (erlotinib) and 36.9 months (GC) (hazard ratio [HR], 0.83; 95% confidence interval [CI], 0.47-1.47; p = 0.513). The 3- and 5-year OS rates were 58.6% and 40.8% with erlotinib and 55.9% and 27.6% with GC (p3-y = 0.819, p5-y = 0.252). Subsequent treatment was administered in 71.9% and 81.8% of patients receiving erlotinib and GC, respectively; targeted therapy contributed mostly to OS (HR, 0.35; 95% CI, 0.18-0.70). After disease progression, the ORR was 53.3%, and the median PFS was 10.9 months during the EGFR-TKI rechallenge. During postoperative therapy, grade 3 or 4 adverse events (AEs) were 13.5% in the erlotinib group and 29.4% in the GC group. No serious adverse events were observed. Erlotinib exhibited clinical feasibility for resectable IIIA-N2 NSCLC over chemotherapy in the neoadjuvant setting.
Collapse
|
16
|
Chen C, Zhou L, Zhu L, Luo G, Wang L, Zeng C, Zhou H, Li Y. TNFAIP3 mutation is an independent poor overall survival factor for patients with T-cell acute lymphoblastic leukemia. Cancer Med 2023; 12:3952-3961. [PMID: 36056685 PMCID: PMC9972139 DOI: 10.1002/cam4.5196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND It is imperative to explore potential biomarkers for predicting clinical outcome and developing targeted therapies for T-cell acute lymphoblastic leukemia (T-ALL). This study aimed to investigate the mutation patterns of tumor necrosis factor-alpha-inducing protein 3 (TNFAIP3, also known as A20) and its role in the prognosis of T-ALL patients. METHODS Polymerase chain reaction (PCR) and Sanger sequencing data from T-ALL (n = 49, JNU) and targeted sequencing data from T-ALL (n = 54, NFH) in our clinical center and a publicly available dataset (n = 121, PRJCA002270), were used to detect TNFAIP3 mutation. RESULTS Three TNFAIP3 single nucleotide polymorphisms (SNPs; g.3033 C > T, g.3910 G > A, and g.3904 A > G) were detected in T-ALL in the JNU dataset, and g.3033 C > T accounted for the highest proportion, reaching 60% (6/10). Interestingly, TNFAIP3 mutation mainly occurred in adults but not pediatric patients in all three datasets (JNU, NFH, and PRJCA002270). T-ALL patients carrying a TNFAIP3 mutation were associated with a trend of poor overall survival (OS) (p = 0.092). Moreover, TNFAIP3 mutation was also an independent factor for OS for T-ALL patients (p = 0.008). Further subgroup analysis suggested that TNFAIP3 mutation predicted poor OS for T-ALL patients who underwent chemotherapy only (p < 0.001), and it was positively correlated with high risk and early T-cell precursor ALL (ETP-ALL) in two independent validation datasets (NFH and PRJCA002270). CONCLUSION TNFAIP3 mutation mainly occurs in adult T-ALL patients, and it was associated with adverse clinical outcomes for T-ALL patients; thus, it might be a biomarker for prognostic stratification.
Collapse
Affiliation(s)
- Cunte Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Lingling Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Zhu
- Department of Rheumatism and Immunology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liang Wang
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Identification of TCR rearrangements specific for genetic alterations in EGFR-mutated non-small cell lung cancer: results from the ADJUVANT-CTONG1104 trial. Cancer Immunol Immunother 2022; 72:1261-1272. [PMID: 36427086 DOI: 10.1007/s00262-022-03330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Tumor response T cells, which have specific T cell receptor (TCR) rearrangements in tumor-infiltrating lymphocytes, determine their ability to interact with the mutation-derived neoantigens presented by antigen-presenting cells. Little is known about the genetic alterations related to specific TCR clones in non-small cell lung cancer (NSCLC) patients who have an epidermal growth factor receptor (EGFR) mutation. In this study, tumor tissues were collected from 101 patients with stage II/III resectable NSCLC with an EGFR mutation (57 patients were treated with gefitinib and 44 were treated with chemotherapy) in the ADJUVANT-CTONG1104 trial for high-throughput TCRβ V region and exome sequencing. Ten clonal TCRs were associated with EGFR exon 19 deletion (del), EGFR exon 21 mutation (L858R), RB1 alteration, TP53 exon 4/5 missense mutation, TP53 nonsense mutation, or copy number gains in NKX2-1 and CDK4. Among the TCRs, there was frequent use of Vβ20-1Jβ2-3 specifically for EGFR exon 19 del or Vβ9Jβ2-1 specifically for EGFR exon 21 mutation (L858R), and these were significantly associated with favorable overall survival (OS) for NSCLC patients harboring EGFR exon 19 del or exon 21 L858R, particularly in the adjuvant gefitinib setting. Moreover, in comparison with the chemotherapy-preferable (CP) group, higher frequencies of Vβ20-1Jβ2-3 and Vβ9Jβ2-1 were found in the highly TKI-preferable (HTP) or TKI-preferable (TP) groups. Altogether, we identified ten TCR rearrangements specific for genetic alterations in NSCLC. Importantly, high abundance Vβ20-1Jβ2-3 or Vβ9Jβ2-1 may be an immune biomarker for guiding adjuvant gefitinib decisions for NSCLC patients harboring EGFR exon 19 del or EGFR exon 21 L858R.
Collapse
|
18
|
Toward a cure for lung cancer: important advances in operable non-small cell lung cancer. Sci Bull (Beijing) 2022; 67:1402-1405. [PMID: 36546178 DOI: 10.1016/j.scib.2022.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Liu SY, Liu SYM, Zhong WZ, Wu YL. Targeted Therapy in Early Stage Non-small Cell Lung Cancer. Curr Treat Options Oncol 2022; 23:1169-1184. [PMID: 35876956 DOI: 10.1007/s11864-022-00994-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT Tyrosine kinase inhibitors (TKIs) have dramatically improved tumor response rates and survival benefits in advanced oncogenic non-small-cell lung cancer (NSCLC). Given the impressive success, a renewed interest has been raised in the study of these agents in the perioperative setting. Preliminary data have shown dramatic effectiveness compared to conventional chemotherapy. Given the explicit need to induce durable responses and raise cure rates, we summarize the current progression, identify key challenges, and raise potential opportunities for perioperative targeted therapy that range from precise biomarkers to optimal adjuvant regimens for individual patients. As perioperative treatment indeed provides researchers with a unique platform to address the challenges mentioned above, investigators could obtain a comprehensive analysis of genomic profiling and trace resistance mechanisms. Multidisciplinary collaboration and adaptive clinical trial designs are warranted to integrate translational research into personalized perioperative TKI treatment paradigms.
Collapse
Affiliation(s)
- Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China
| | - Si-Yang Maggie Liu
- Department of Hematology, Jinan University, Guangzhou, 510632, China.,First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
20
|
Zhang Y, Liu Z, Wei W, Li Y. TCR engineered T cells for solid tumor immunotherapy. Exp Hematol Oncol 2022; 11:38. [PMID: 35725570 PMCID: PMC9210724 DOI: 10.1186/s40164-022-00291-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
T cell immunotherapy remains an attractive approach for cancer immunotherapy. T cell immunotherapy mainly employs chimeric antigen receptor (CAR)- and T cell receptor (TCR)-engineered T cells. CAR-T cell therapy has been an essential breakthrough in treating hematological malignancies. TCR-T cells can recognize antigens expressed both on cell surfaces and in intracellular compartments. Although TCR-T cells have not been approved for clinical application, a number of clinical trials have been performed, particularly for solid tumors. In this article, we summarized current TCR-T cell advances and their potential advantages for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China
| | - Zhipeng Liu
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China.,Guangdong Cord blood bank, Guangzhou, 510663, China
| | - Wei Wei
- Guangzhou Municipality Tianhe Nuoya Bio-engineering Co. Ltd, Guangzhou, 510663, China. .,Guangdong Cord blood bank, Guangzhou, 510663, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, 601 Huang Pu Da Dao Xi, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Perioperative targeted therapy for oncogene-driven NSCLC. Lung Cancer 2022; 172:160-169. [DOI: 10.1016/j.lungcan.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
|
22
|
Chen C, Liu SM, Chen Y, Han M, Ou Q, Bao H, Xu L, Zhang Y, Zhang JT, Zhong W, Zhou Q, Yang XN, Shao Y, Wu YL, Liu SY, Li Y. Poor prognosis of intra-tumoural TRBV6-6 variants in EGFR-mutant NSCLC: Results from the ADJUVANT-CTONG1104 trial. Clin Transl Med 2022; 12:e775. [PMID: 35452192 PMCID: PMC9029017 DOI: 10.1002/ctm2.775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Cunte Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Siyang Maggie Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, The Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.,Chinese Thoracic Oncology Group (CTONG), Guangzhou, China
| | - Yedan Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Ming Han
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jia-Tao Zhang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangzhou, China
| | - Wenzhao Zhong
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangzhou, China
| | - Qing Zhou
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangzhou, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi-Long Wu
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangzhou, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|