1
|
Zhang S, Zhou H, Liu Y, Chen G, Li Q, Xu Y, Zheng R, Li S, Chen X, Zhao L. A stimuli-responsive immunostimulant to activate chemo-immunotherapeutic effects by inducing DNA damage and STING activation. J Colloid Interface Sci 2025; 688:664-676. [PMID: 40022787 DOI: 10.1016/j.jcis.2025.02.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The integration of chemotherapy with systemic immune activation represents a promising approach to eradicate metastatic tumors. In this study, a stimuli-responsive immunostimulant nanoplatform (denoted as MV@Lip) was developed to synergistically activate antitumor immunity via chemotherapy-induced DNA damage and subsequent activation of the stimulator of interferon genes (STING) signaling pathway. The MV@Lip system encapsulates the chemotherapeutic agent mitoxantrone (Mit) and the STING agonist vadimezan (Vad) within a redox-responsive liposomal carrier. MV@Lip was indicated to enhance drug stability, while simultaneously promoting efficient co-delivery of both agents into tumor cells and suppressing tumor proliferation. Mechanistically, MV@Lip exerts its therapeutic efficacy through inducing DNA damage and triggering immunogenic cell death (ICD) to enhance tumor immunogenicity by releasing damage-associated molecular patterns (DAMPs). Concurrently, the released Vadimezan could activate the STING pathway, amplifying innate immune responses through the production of proinflammatory factors and the recruitment of immune effector cells. This concerted action facilitates the infiltration and activation of natural killer (NK) cells and T lymphocytes in the tumor microenvironment, ultimately leading to the suppression of both primary and metastatic tumors. These findings provide a compelling basis for advancing chemotherapeutic combinations as immune-stimulating strategies in the treatment of metastatic malignancies.
Collapse
Affiliation(s)
- Shuiying Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China
| | - Hangyu Zhou
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yixin Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Guangmiao Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qiuyuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Youqin Xu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Rongrong Zheng
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shiying Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China.
| | - Linping Zhao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, PR China; The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
2
|
Zapatero-Solana E, Ding Y, Pulliam N, de Dios A, Ortiz-Ruiz MJ, Lallena MJ. Models of Early Resistance to CDK4/6 Inhibitors Unveil Potential Therapeutic Treatment Sequencing. Int J Mol Sci 2025; 26:2643. [PMID: 40141282 PMCID: PMC11942273 DOI: 10.3390/ijms26062643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND CDK4/6 inhibitors (CDK4/6i) combined with hormone therapies have demonstrated clinical benefit in HR+, HER2- breast cancer patients. However, the onset of resistance remains a concern and highlights a need for therapeutic strategies to improve outcomes. The objective of this study was to develop an in vitro model to better understand the mechanisms of resistance to CDK4/6i + hormone therapies and identify therapeutic strategies with potential to overcome this resistance. METHODS The HR+, HER2- T47D breast cancer cell line genetically modified with a Geminin-Venus reporter construct was treated with CDK4/6i (abemaciclib or palbociclib) in combination with 4-hydroxytamoxifen (tamoxifen). Resistant cells were identified by cell sorting for Geminin (%GEM+), a marker of the S/G2/M phases of the cell cycle, and confirmed by treatment with tamoxifen plus the CDK4/6i used to drive resistance. In resistant cells, following treatment with CDK4/6i + ET (tamoxifen or fulvestrant), the effects on cell proliferation (%GEM+) and viability, gene expression, and protein analysis to evaluate CDK4/6-cyclin D complex composition were examined. RESULTS Palbociclib + tamoxifen-resistant (PTxR) cells treated with abemaciclib + ET showed decreased %GEM+, %Ki67, and colony formation ability, compared to abemaciclib + tamoxifen-resistant (ATxR) cells treated with palbociclib + ET. Additionally, PTxR cells showed increased CDK4-p21 interaction, compared to ATxR. The CDK6 levels were greater in ATxR cells compared to PTxR cells, associated with CDK4/6i resistance. Additionally, abemaciclib + fulvestrant continued to robustly decrease pRb levels in PTxR models compared to palbociclib + fulvestrant in ATxR models. Transcriptome analysis revealed a depression of the cell cycle and E2F- and Rb-related genes in PTxR cells following treatment with abemaciclib + ET, not present in ATxR cells treated with palbociclib + ET. Both resistant models showed increased EGFR-related gene expression. CONCLUSION Taken together, we describe CDK4/6i-dependent mechanisms resulting in early-onset resistance to CDK4/6i + ET, using clinically relevant drug concentrations, in preclinical breast cancer cell models. The characterization of these preclinical models post progression on CDK4/6 inhibitor + ET treatment highlights the potential that the specific sequencing of CDK4/6 inhibitors could offer to overcome acquired resistance to CDK4/6i + ET. Abemaciclib + fulvestrant is currently under clinical investigation in patients with HR+, HER2- breast cancer and progression on prior CDK4/6i + ET (NCT05169567, postMONARCH).
Collapse
Affiliation(s)
| | - Yan Ding
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (Y.D.); (N.P.); (A.d.D.)
| | - Nicholas Pulliam
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (Y.D.); (N.P.); (A.d.D.)
| | - Alfonso de Dios
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (Y.D.); (N.P.); (A.d.D.)
| | | | | |
Collapse
|
3
|
Serbes ED, Horeweg N, Parra-Herran C, van Rijnsoever R, Jobsen JJ, Jurgenliemk-Schulz I, Kuijsters N, Nout RA, Haverkort MAD, Powell ME, Khaw P, Plante M, Genestie C, Nijman HW, Creutzberg CL, Bosse T, Kramer CJH. Retinoblastoma Protein Loss in p53 Abnormal Endometrial Carcinoma: Histologic and Clinicopathological Correlates. Mod Pathol 2025; 38:100660. [PMID: 39577664 DOI: 10.1016/j.modpat.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Of the 4 molecular subtypes of endometrial cancer (EC), p53-abnormal (p53abn) EC is associated with abundant copy number alterations and the worst clinical outcome. Patients with p53abn EC have the highest risk of disease recurrence and death, independent of tumor grade and histologic subtype. Currently, all invasive p53abn ECs are considered high risk, and no prognostic biomarkers have yet been found that can aid in clinical management. Here, we aimed to test whether loss of retinoblastoma (RB) protein expression using immunohistochemistry has the potential for prognostic refinement of p53abn EC. A large cohort of 227 p53abn ECs collected from the PORTEC-1/2/3 clinical trials and the Medisch Spectrum Twente cohort study was investigated, and RB loss was identified in 7.0% (n = 16/227). RB-lost p53abn ECs were predominantly high-grade endometrioid ECs (n = 6, 37.5%) and carcinosarcomas with endometrioid-type epithelial component (n = 5, 31.3%). Histologically, RB-lost p53abn ECs were typified by high-grade nuclear atypia (n = 16, 100%), predominantly solid growth pattern (n = 15/16, 93.8%), and polypoid growth (n = 9/16, 56.3%). Copy number loss involving the RB1 locus was identified in the majority of RB-lost p53abn EC (n = 13/14, 92.9%), explaining the loss of RB expression. Comparative analysis also showed that RB-lost p53abn ECs were diagnosed at earlier stages than RB-retained p53abn EC (P = .014). Interestingly, RB-lost p53abn EC showed prolonged time to overall recurrence (P = .038), even within stage I alone (P = .040). These findings highlight distinct morphomolecular features in RB-lost p53abn ECs and confirm the utility of RB immunohistochemistry as a surrogate for underlying molecular RB1 alterations. To our knowledge, this is the first study to show the potential use of RB in prognostic refinement of p53abn EC, although validation is warranted.
Collapse
Affiliation(s)
- Ezgi Dicle Serbes
- Department of Pathology, Van Research and Training Hospital, Van, Turkiye
| | - Nanda Horeweg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlos Parra-Herran
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Jan J Jobsen
- Department of Radiation Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Ina Jurgenliemk-Schulz
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nienke Kuijsters
- Department of Radiation Oncology, Maastro Clinic, Maastricht, The Netherlands
| | - Remi A Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie A D Haverkort
- Department of Radiation Oncology, Radiotherapiegroep, Arnhem, The Netherlands
| | - Melanie E Powell
- Department of Clinical Oncology, Barts Health NHS Trust, London, United Kingdom
| | - Pearly Khaw
- Department of Radiation Oncology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Marie Plante
- Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Catherine Genestie
- Department of Pathology, Gustave Roussy, Villejuif, Île-de-France, France
| | - Hans W Nijman
- Department of Gynecology, University Medical Center Groningen, Groningen, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Claire J H Kramer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Ceylan F, Mehdiyev M, Bilgin B, Tenekeci AK, Yalçın B, Akıncı MB, Dede DŞ, Şendur MAN, Algın E, Yücel Ş. Palliative Radiotherapy in Metastatic Breast Cancer Patients on CDK4/6 Inhibitors: Safety Analysis. Cancers (Basel) 2025; 17:424. [PMID: 39941794 PMCID: PMC11816231 DOI: 10.3390/cancers17030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
PURPOSE CDK4/6 inhibitors require meticulous monitoring due to their potential to cause hematological toxicities and hepatotoxicity. This study evaluates the safety of combining CDK4/6 inhibitors with palliative radiotherapy in patients with metastatic hormone receptor-positive and HER2-negative breast cancer. PATIENTS AND METHODS This study included 188 patients treated with CDK4/6 inhibitors between January 2021 and June 2024. Data on patient demographics, tumor characteristics, and treatment interventions were extracted from medical records. The primary focus was on the incidence of grade ≥ 3 hematologic toxicities and hepatotoxicity, assessed according to CTCAE 5.0 criteria, in those receiving concurrent palliative radiotherapy. RESULTS With a median follow-up of 18.5 months, the 18-month PFS and OS rates were 67% and 85%, respectively. The median age was 57.5 years, and 79% of patients were post-menopausal. Bone and liver metastases were present in 66% and 23% of patients, respectively. Concurrent palliative radiotherapy was administered in 25% of the cohort. The incidence of grade ≥ 3 hematologic toxicity was comparable between those who received radiotherapy and those who did not. Ribociclib use was associated with lower rates of grade 3 hematologic toxicity (OR: 0.37), neutropenia (OR: 0.41), dose interruptions (OR: 0.30), and dose reductions (OR: 0.37). Pre-menopausal status was linked to fewer dose reductions (OR: 0.17). Rates of treatment interruption, dose reduction, and withdrawal were 55%, 24%, and 2%, respectively. CONCLUSIONS The concurrent use of CDK4/6 inhibitors and palliative radiotherapy does not increase the incidence of hematological adverse events in patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Furkan Ceylan
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
| | - Mirmehdi Mehdiyev
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
| | - Burak Bilgin
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, 06800 Ankara, Turkey
| | | | - Bülent Yalçın
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, 06800 Ankara, Turkey
| | - M. Bülent Akıncı
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, 06800 Ankara, Turkey
| | - Didem Şener Dede
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, 06800 Ankara, Turkey
| | - Mehmet Ali Nahit Şendur
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, 06800 Ankara, Turkey
| | - Efnan Algın
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
| | - Şebnem Yücel
- Department of Medical Oncology, Ankara Bilkent City Hospital, 06800 Ankara, Turkey
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University, 06800 Ankara, Turkey
| |
Collapse
|
5
|
Hong T, Hogger AC, Wang D, Pan Q, Gansel J, Engleitner T, Öllinger R, Gschwend JE, Rad R, Nawroth R. CDK4/6 inhibition initiates cell cycle arrest by nuclear translocation of RB and induces a multistep molecular response. Cell Death Discov 2024; 10:453. [PMID: 39461947 PMCID: PMC11513128 DOI: 10.1038/s41420-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
CDK4/6 inhibitors are standard of care in the treatment of metastatic breast cancer. Treatment regimen consists of a combination with endocrine therapy, since their therapeutic efficacy as monotherapy in most clinical trials was rather limited. Thus, understanding the molecular mechanisms that underlie response to therapy might allow for the development of an improved therapy design. We analyzed the response to the CDK4/6 inhibitor palbociclib in bladder cancer cells over a 48-hour time course using RNA sequencing and identified a multi-step mechanism of response. We next translated these results to the molecular mechanism in bladder cancer cells upon PD treatment. The initial step is characterized by translocation of the RB protein into the nucleus by activation of importin α/β, a mechanism that requires the NLS sequence. In parallel, RB is proteolyzed in the cytoplasm, a process regulated by gankyrin and the SCF complex. Only hypophosphorylated RB accumulates in the nucleus, which is an essential step for an efficient therapy response by initiating G1 arrest. This might explain the poor response in RB negative or mutated patients. At later stages during therapy, increased expression of the MiT/TFE protein family leads to lysosomal biogenesis which is essential to maintain this response. Lastly, cancer cells either undergo senescence and apoptosis or develop mechanisms of resistance following CDK4/6 inhibition.
Collapse
Affiliation(s)
- Ting Hong
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna C Hogger
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dongbiao Wang
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Qi Pan
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Julie Gansel
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Jürgen E Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Dong L, Liu C, Sun H, Wang M, Sun M, Zheng J, Yu X, Shi R, Wang B, Zhou Q, Chen Z, Xing B, Wang Y, Yao X, Mei M, Ren Y, Zhou X. Targeting STAT3 potentiates CDK4/6 inhibitors therapy in head and neck squamous cell carcinoma. Cancer Lett 2024; 593:216956. [PMID: 38735381 DOI: 10.1016/j.canlet.2024.216956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.
Collapse
Affiliation(s)
- Lin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Haoyang Sun
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mo Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mengyu Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jianwei Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxue Yu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Rong Shi
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Qianqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Zhiqiang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bofan Xing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
7
|
Tornyi I, Árkosy P, Horváth I, Furka A. A new perspective on the proper timing of radiotherapy during CDK4/6 inhibitor therapy in patients with "bone-only" metastatic breast cancer. Pathol Oncol Res 2023; 29:1611369. [PMID: 37886029 PMCID: PMC10598277 DOI: 10.3389/pore.2023.1611369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The vast majority of hormone positive and HER2 negative advanced breast cancers can be controlled well by endocrine therapy combined with the groundbreaking use of CDK4/6 inhibitors in the metastatic first-line setting. Approximately 50%-60% of these patients have "bone-only" metastatic disease. In oligometastatic cases or if a certain number of uncontrolled lesions develop during the aforementioned therapy, ablative radiotherapy can be delivered or, in symptomatic cases, urgent irradiation is needed with palliative intent. To achieve the most effective results, parallel with good quality of life, the timing of radiotherapy must be determined precisely, taking into account that different cell cycles are involved during different treatment modalities; therefore, optimization of treatment schedules ensures longer and safer post-progression overall survival. The key question is whether the two treatment modalities are safe concurrently or whether they should be administered separately, and if so, what is the optimal sequence and why? This manuscript aims to answer this important question, with a focus on quality of life. Existing publications focus on safety and toxicity profiles, and efficacy is detailed only tangentially and minimally.
Collapse
Affiliation(s)
- Ilona Tornyi
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Horváth
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Furka
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Clinical Radiology, Faculty of Health Care, Institute of Practical Methodology and Diagnostics, University of Miskolc, Miskolc, Hungary
| |
Collapse
|
8
|
Camps Maléa A, Hennequin C, Rivera S. [Targeted systemic treatments and locoregional radiotherapy for breast cancer: Can we expect a benefit from the potentiation of local treatment?]. Cancer Radiother 2023; 27:535-541. [PMID: 37558607 DOI: 10.1016/j.canrad.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer is the first most common cancer worldwide, and radiation therapy has a major role to play in locoregional adjuvant treatment. In recent years, we have seen the emergence of adjuvant targeted systemic therapies improving the prognosis of patients at high risk of recurrence. Practices concerning combinations of targeted therapies and locoregional radiation therapy for non-metastatic breast cancers often remain heterogeneous due to the low level of evidence and lack of validated recommendations. This literature review covers immunotherapy, CDK 4/6 inhibitors, PARP inhibitors and anti-Her2 therapies. Combining these targeted systemic therapies with radiation therapy could potentiate local treatment. The optimal therapeutic sequence and fractionation for maximum synergistic effect remain to be defined. However, while efficacy may be enhanced, radiosensitization of healthy tissue may also lead to increased toxicity. It appears possible to continue immunotherapy, trastuzumab, pertuzumab, TDM-1 or lapatinib during locoregional breast and lymph node irradiation. PARP inhibitors and CDK4/6 inhibitors are still to be suspended, due to the lack of data in the adjuvant setting and their short half-life, which does not necessitate prolonged discontinuation. As with the new antibody-drug conjugates, prospective data are needed in conjunction with adjuvant radiation therapy.
Collapse
Affiliation(s)
- A Camps Maléa
- Service de radiothérapie, centre Henry-S-Kaplan, CHRU Bretonneau, Tours, France
| | - C Hennequin
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75475 Paris, France
| | - S Rivera
- Département d'oncologie-radiothérapie, institut Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif, France.
| |
Collapse
|
9
|
Xie X, Liang H, Jiangting W, Wang Y, Ma X, Tan Z, Cheng L, Luo Z, Wang T. Cancer-testis antigen CEP55 serves as a prognostic biomarker and is correlated with immune infiltration and immunotherapy efficacy in pan-cancer. Front Mol Biosci 2023; 10:1198557. [PMID: 37484531 PMCID: PMC10360201 DOI: 10.3389/fmolb.2023.1198557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Centrosomal Protein 55 (CEP55) was initially described as a main participant in the final stage of cytokinesis. Further research identified CEP55 as a cancer-testis antigen (CTA) that is aberrantly expressed in different malignancies and a cancer vaccination candidate. The current study aimed to disclose the complete expression of CEP55, its effect on various malignancy prognoses, and its role in the tumor microenvironment. Methods: Transcriptional information regarding tumor and normal tissues, as well as externally validated and protein expression data were gathered from the Cancer Genome Atlas, Genotype-Tissue Expression project, Gene Expression Omnibus, and Human Protein Atlas. We examined the effect of CEP55 on tumor prognosis using Kaplan-Meier (KM) and univariate Cox regression analyses. In addition, we investigated the connections between CEP55 expression and hallmark cancer pathways, immune cell infiltration, and immune regulator expression across malignancies. We constructed and validated a CEP55-related risk model for hepatocellular carcinoma (HCC) and explored the correlations between CEP55 expression and HCC molecular subtypes. Finally, we investigated putative small-molecule drugs targeting CEP55 using a connectivity map (CMap) database and validated them using molecular docking analysis. Findings: CEP55 was aberrantly expressed in most cancers and revealed a prognostic value for several malignancies. Cancers with high CEP55 expression showed significantly enhanced cell cycle, proliferation, and immune-related pathways. For most malignancies, elevated CEP55 expression was associated with the infiltration of myeloid-derived suppressor cells (MDSCs) and Th2 cells. In addition, CEP55 expression was linked to immunomodulators and the potential prediction of immune checkpoint inhibitor (ICI) responses, and strongly associated with distinct molecular HCC subtypes, whereby the CEP55-based nomogram performed well in predicting short- and long-term HCC survival. Finally, we used connectivity map (CMap) and molecular docking analyses to discover three candidate small-molecule drugs that could directly bind to CEP55. Conclusion: CEP55 affected the occurrence and development of various cancers and possibly the regulation of the tumor immune microenvironment. Our findings suggest that CEP55 is a potential biomarker for prognosis and a powerful biomarker for ICI efficacy prediction.
Collapse
Affiliation(s)
- Xiaodong Xie
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hongyin Liang
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wushuang Jiangting
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Microbiology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Ma
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhen Tan
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Long Cheng
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, The Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhulin Luo
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, The Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tao Wang
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, The Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Abbasi-Kolli M, Shahbazi S, Geranpayeh L. Down-regulation of RB1 and miR-132 in ductal carcinoma of the breast. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2023; 14:1-10. [PMID: 37214588 PMCID: PMC10195390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/07/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION miR-132-3p acts in normal breast development and its downregulation has been documented in breast cancer. One of the targets of miR-132-3p is RB1 which is also inactivated in breast cancer. The interactions between RB1 and miR-132 have been reported in several pathological conditions. We aimed to investigate the correlation between expression levels of miR-132 and RB1 in ductal carcinoma of the breast. METHODS The study was carried out on tissues obtained from female patients with primary breast cancer. Tumor samples were classified using clinical and pathological data. Following RNA extraction and cDNA synthesis, relative gene expressions in tumors were compared to non-cancerous adjacent tissues. The link between RB1 and miR-132 was assessed by the correlation coefficient test. RESULTS Our findings revealed a significant decrease in miR-132 and RB1 expressions with a ratio of 0.165 and 0.365, respectively. Tumor grade showed an association with miRNA-132 levels. The expression of miR-132 in grade I tumors was almost equal to that of normal adjacent tissues, but was intensely decreased in grades II and III. The correlation analysis showed a small linear association between RB1 and miR-132 levels. CONCLUSION The reduction of miR-132 and RB1 expression confirmed the tumor-suppressive role of both genes in breast cancer. Considering that RB1 is one of the miR-132 targets, further studies are required to discover any miRNA-mediated upregulation role for miR-132. Our finding discovered a small linear association between miR-132 and RB1, which can be concluded towards their independent function in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Loabat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
11
|
Klapp V, Buqué A, Bloy N, Sato A, Yamazaki T, Zhou XK, Formenti SC, Galluzzi L, Petroni G. Cellular senescence in the response of HR + breast cancer to radiotherapy and CDK4/6 inhibitors. J Transl Med 2023; 21:110. [PMID: 36765430 PMCID: PMC9921325 DOI: 10.1186/s12967-023-03964-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Preclinical evidence from us and others demonstrates that the anticancer effects of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors can be enhanced with focal radiation therapy (RT), but only when RT is delivered prior to (rather than after) CDK4/6 inhibition. Depending on tumor model, cellular senescence (an irreversible proliferative arrest that is associated with the secretion of numerous bioactive factors) has been attributed beneficial or detrimental effects on response to treatment. As both RT and CDK4/6 inhibitors elicit cellular senescence, we hypothesized that a differential accumulation of senescent cells in the tumor microenvironment could explain such an observation, i.e., the inferiority of CDK4/6 inhibition with palbociclib (P) followed by RT (P→RT) as compared to RT followed by palbociclib (RT→P). METHODS The impact of cellular senescence on the interaction between RT and P was assessed by harnessing female INK-ATTAC mice, which express a dimerizable form of caspase 8 (CASP8) under the promoter of cyclin dependent kinase inhibitor 2A (Cdkn2a, coding for p16Ink4), as host for endogenous mammary tumors induced by the subcutaneous implantation of medroxyprogesterone acetate (MPA, M) pellets combined with the subsequent oral administration of 7,12-dimethylbenz[a]anthracene (DMBA, D). This endogenous mouse model of HR+ mammary carcinogenesis recapitulates key immunobiological aspects of human HR+ breast cancer. Mice bearing M/D-driven tumors were allocated to RT, P or their combination in the optional presence of the CASP8 dimerizer AP20187, and monitored for tumor growth, progression-free survival and overall survival. In parallel, induction of senescence in vitro, in cultured human mammary hormone receptor (HR)+ adenocarcinoma MCF7 cells, triple negative breast carcinoma MDA-MB-231 cells and mouse HR+ mammary carcinoma TS/A cells treated with RT, P or their combination, was determined by colorimetric assessment of senescence-associated β-galactosidase activity after 3 or 7 days of treatment. RESULTS In vivo depletion of p16Ink4-expressing (senescent) cells ameliorated the efficacy of P→RT (but not that of RT→P) in the M/D-driven model of HR+ mammary carcinogenesis. Accordingly, P→RT induced higher levels of cellular senescence than R→TP in cultured human and mouse breast cancer cell lines. CONCLUSIONS Pending validation in other experimental systems, these findings suggest that a program of cellular senescence in malignant cells may explain (at least partially) the inferiority of P→RT versus RT→P in preclinical models of HR+ breast cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Xi Kathy Zhou
- Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
El-Tanani M, Al Khatib AO, Al-Najjar BO, Shakya AK, El-Tanani Y, Lee YF, Serrano-Aroca Á, Mishra V, Mishra Y, Aljabali AA, Goyal R, Negi P, Farani MR, Binabaj MM, Gholami A, Binabaj MM, Charbe NB, Tambuwala MM. Cellular and molecular basis of therapeutic approaches to breast cancer. Cell Signal 2023; 101:110492. [PMID: 36241056 DOI: 10.1016/j.cellsig.2022.110492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
In recent decades, there has been a significant amount of research into breast cancer, with some important breakthroughs in the treatment of both primary and metastatic breast cancers. It's a well-known fact that treating breast cancer is still a challenging endeavour even though physicians have a fantastic toolset of the latest treatment options at their disposal. Due to limitations of current clinical treatment options, traditional chemotherapeutic drugs, and surgical options are still required to address this condition. In recent years, there have been several developments resulting in a wide range of treatment options. This review article discusses the cellular and molecular foundation of chemotherapeutic drugs, endocrine system-based treatments, biological therapies, gene therapy, and innovative techniques for treating breast cancer.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan; Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| | - Arwa Omar Al Khatib
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
| | - Belal O Al-Najjar
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
| | - Ashok K Shakya
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
| | - Yahia El-Tanani
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Yin-Fai Lee
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK; Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 566, Jordan
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173229, India
| | - Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), 1417614411 Tehran, Iran.
| | - Maryam Moradi Binabaj
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Moradi Binabaj
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nitin B Charbe
- Center for pharmacometrics and system pharmacology, department of pharmaceutics, college of pharmacy, University of Florida, FL, USA
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|
13
|
Jungles KM, Holcomb EA, Pearson AN, Jungles KR, Bishop CR, Pierce LJ, Green MD, Speers CW. Updates in combined approaches of radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Front Oncol 2022; 12:1022542. [PMID: 36387071 PMCID: PMC9643771 DOI: 10.3389/fonc.2022.1022542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer is the most prevalent non-skin cancer diagnosed in females and developing novel therapeutic strategies to improve patient outcomes is crucial. The immune system plays an integral role in the body’s response to breast cancer and modulating this immune response through immunotherapy is a promising therapeutic option. Although immune checkpoint inhibitors were recently approved for the treatment of breast cancer patients, not all patients respond to immune checkpoint inhibitors as a monotherapy, highlighting the need to better understand the biology underlying patient response. Additionally, as radiotherapy is a critical component of breast cancer treatment, understanding the interplay of radiation and immune checkpoint inhibitors will be vital as recent studies suggest that combined therapies may induce synergistic effects in preclinical models of breast cancer. This review will discuss the mechanisms supporting combined approaches with radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Moreover, this review will analyze the current clinical trials examining combined approaches of radiotherapy, immunotherapy, chemotherapy, and targeted therapy. Finally, this review will evaluate data regarding treatment tolerance and potential biomarkers for these emerging therapies aimed at improving breast cancer outcomes.
Collapse
Affiliation(s)
- Kassidy M. Jungles
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Erin A. Holcomb
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ashley N. Pearson
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kalli R. Jungles
- Department of Biology, Saint Mary’s College, Notre Dame, IN, United States
| | - Caroline R. Bishop
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Lori J. Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Michael D. Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| | - Corey W. Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| |
Collapse
|
14
|
Michmerhuizen AR, Lerner LM, Ward C, Pesch AM, Zhang A, Schwartz R, Wilder-Romans K, Eisner JR, Rae JM, Pierce LJ, Speers CW. Androgen and oestrogen receptor co-expression determines the efficacy of hormone receptor-mediated radiosensitisation in breast cancer. Br J Cancer 2022; 127:927-936. [PMID: 35618789 PMCID: PMC9427858 DOI: 10.1038/s41416-022-01849-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Radiation therapy (RT) and hormone receptor (HR) inhibition are used for the treatment of HR-positive breast cancers; however, little is known about the interaction of the androgen receptor (AR) and estrogen receptor (ER) in response to RT in AR-positive, ER-positive (AR+/ER+) breast cancers. Here we assessed radiosensitisation of AR+/ER+ cell lines using pharmacologic or genetic inhibition/degradation of AR and/or ER. METHODS Radiosensitisation was assessed with AR antagonists (enzalutamide, apalutamide, darolutamide, seviteronel, ARD-61), ER antagonists (tamoxifen, fulvestrant) or using knockout of AR. RESULTS Treatment with AR antagonists or ER antagonists in combination with RT did not result in radiosensitisation changes (radiation enhancement ratios [rER]: 0.76-1.21). Fulvestrant treatment provided significant radiosensitisation of CAMA-1 and BT-474 cells (rER: 1.06-2.0) but not ZR-75-1 cells (rER: 0.9-1.11). Combining tamoxifen with enzalutamide did not alter radiosensitivity using a 1 h or 1-week pretreatment (rER: 0.95-1.14). Radiosensitivity was unchanged in AR knockout compared to Cas9 cells (rER: 1.07 ± 0.11), and no additional radiosensitisation was achieved with tamoxifen or fulvestrant compared to Cas9 cells (rER: 0.84-1.19). CONCLUSION While radiosensitising in AR + TNBC, AR inhibition does not modulate radiation sensitivity in AR+/ER+ breast cancer. The efficacy of ER antagonists in combination with RT may also be dependent on AR expression.
Collapse
Affiliation(s)
- Anna R Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lynn M Lerner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Connor Ward
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Amanda Zhang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Schwartz
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - James M Rae
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Brion T, Quéro L. Radiotherapy and CDK inhibitors: Opportunities and risks. Cancer Radiother 2022; 26:968-972. [PMID: 35989152 DOI: 10.1016/j.canrad.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
CDK4/6 inhibitors are nowadays commonly used in metastatic HR+/HER2- breast cancer. Herein, we report a literature review regarding the benefits and risks of their combination with radiotherapy. Numerous pre-clinical studies have indeed shown a potential synergistic effect of these treatments in combination with radiotherapy in various types of cancers. On the other hand, some retrospective clinical studies have reported increased acute toxicity in case of digestive or pulmonary irradiation; therefore, it is advisable to discontinue CDK4/6 inhibitors before starting irradiation. Several prospective clinical trials are currently ongoing to assess the feasibility of this combination.
Collapse
Affiliation(s)
- T Brion
- Institut Gustave-Roussy, département d'oncologie radiothérapie, 114, rue Edouard-Vaillant, Villejuif, France.
| | - L Quéro
- Inserm U1160, université Paris Cité, 1, avenue Claude-Vellefeaux, 75010 Paris, France; Hôpital Saint-Louis, service de cancérologie-radiothérapie, 1, avenue Claude-Vellefeaux, 75010 Paris, France
| |
Collapse
|
16
|
Alonso-González C, González-Abalde C, Menéndez-Menéndez J, González-González A, Álvarez-García V, González-Cabeza A, Martínez-Campa C, Cos S. Melatonin Modulation of Radiation-Induced Molecular Changes in MCF-7 Human Breast Cancer Cells. Biomedicines 2022; 10:1088. [PMID: 35625825 PMCID: PMC9138876 DOI: 10.3390/biomedicines10051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Cristina González-Abalde
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain;
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-Cabeza
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| |
Collapse
|