1
|
Fotopoulou F, Rodriguez-Correa E, Dussiau C, Milsom MD. Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging? Exp Hematol 2024:104698. [PMID: 39725143 DOI: 10.1016/j.exphem.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues. This review reappraises an HSC-centric view of hematopoietic aging by exploring how the entire hematopoietic hierarchy, from stem cells to mature cells, contributes to age-related disorders. It highlights the decline of both innate and adaptive immunity, leading to increased susceptibility to infections and cancer, and the rise of autoimmunity as peripheral immune cells undergo aging-induced changes. It explores the concept of "inflammaging," where persistent, low-grade inflammation driven by old immune cells creates a cycle of tissue damage and disease. Additionally, this review delves into the roles of inflammation and homeostatic regulation in age-related conditions such as thrombotic events and anemia, arguing that these issues arise from broader dysfunctions rather than stemming from HSC functional attrition alone. In summary, this review highlights the importance of taking a holistic approach to studying hematopoietic aging and its related pathologies. By looking beyond just stem cells and considering the full spectrum of age-associated changes, one can better capture the complexity of aging and attempt to develop preventative or rejuvenative strategies that better target multiple facets of this process.
Collapse
Affiliation(s)
- Foteini Fotopoulou
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Esther Rodriguez-Correa
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Charles Dussiau
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
| |
Collapse
|
2
|
Saleiro D, Kosciuczuk EM, Fischietti M, Perez RE, Yang GS, Eckerdt F, Beauchamp EM, Hou Y, Wang Q, Weinberg RS, Fish EN, Yue F, Hoffman R, Platanias LC. Targeting CHAF1B Enhances IFN Activity against Myeloproliferative Neoplasm Cells. CANCER RESEARCH COMMUNICATIONS 2023; 3:943-951. [PMID: 37377894 PMCID: PMC10231401 DOI: 10.1158/2767-9764.crc-23-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Interferons (IFNs) are cytokines with potent antineoplastic and antiviral properties. IFNα has significant clinical activity in the treatment of myeloproliferative neoplasms (MPN), but the precise mechanisms by which it acts are not well understood. Here, we demonstrate that chromatin assembly factor 1 subunit B (CHAF1B), an Unc-51-like kinase 1 (ULK1)-interactive protein in the nuclear compartment of malignant cells, is overexpressed in patients with MPN. Remarkably, targeted silencing of CHAF1B enhances transcription of IFNα-stimulated genes and promotes IFNα-dependent antineoplastic responses in primary MPN progenitor cells. Taken together, our findings indicate that CHAF1B is a promising newly identified therapeutic target in MPN and that CHAF1B inhibition in combination with IFNα therapy might offer a novel strategy for treating patients with MPN. Significance Our findings raise the potential for clinical development of drugs targeting CHAF1B to enhance IFN antitumor responses in the treatment of patients with MPN and should have important clinical translational implications for the treatment of MPN and possibly in other malignancies.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ewa M. Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - G. Sohae Yang
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elspeth M. Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Rona Singer Weinberg
- The New York Blood Center, New York, New York
- Myeloproliferative Neoplasms Research Consortium, New York, New York
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network & Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yue
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Ronald Hoffman
- Myeloproliferative Neoplasms Research Consortium, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
3
|
Ivanov D, Milosevic Feenstra JD, Sadovnik I, Herrmann H, Peter B, Willmann M, Greiner G, Slavnitsch K, Hadzijusufovic E, Rülicke T, Dahlhoff M, Hoermann G, Machherndl‐Spandl S, Eisenwort G, Fillitz M, Sliwa T, Krauth M, Bettelheim P, Sperr WR, Koller E, Pfeilstöcker M, Gisslinger H, Keil F, Kralovics R, Valent P. Phenotypic characterization of disease-initiating stem cells in JAK2- or CALR-mutated myeloproliferative neoplasms. Am J Hematol 2023; 98:770-783. [PMID: 36814396 PMCID: PMC10952374 DOI: 10.1002/ajh.26889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Myeloproliferative neoplasms (MPN) are characterized by uncontrolled expansion of myeloid cells, disease-related mutations in certain driver-genes including JAK2, CALR, and MPL, and a substantial risk to progress to secondary acute myeloid leukemia (sAML). Although behaving as stem cell neoplasms, little is known about disease-initiating stem cells in MPN. We established the phenotype of putative CD34+ /CD38- stem cells and CD34+ /CD38+ progenitor cells in MPN. A total of 111 patients with MPN suffering from polycythemia vera, essential thrombocythemia, or primary myelofibrosis (PMF) were examined. In almost all patients tested, CD34+ /CD38- stem cells expressed CD33, CD44, CD47, CD52, CD97, CD99, CD105, CD117, CD123, CD133, CD184, CD243, and CD274 (PD-L1). In patients with PMF, MPN stem cells often expressed CD25 and sometimes also CD26 in an aberrant manner. MPN stem cells did not exhibit substantial amounts of CD90, CD273 (PD-L2), CD279 (PD-1), CD366 (TIM-3), CD371 (CLL-1), or IL-1RAP. The phenotype of CD34+ /CD38- stem cells did not change profoundly during progression to sAML. The disease-initiating capacity of putative MPN stem cells was confirmed in NSGS mice. Whereas CD34+ /CD38- MPN cells engrafted in NSGS mice, no substantial engraftment was produced by CD34+ /CD38+ or CD34- cells. The JAK2-targeting drug fedratinib and the BRD4 degrader dBET6 induced apoptosis and suppressed proliferation in MPN stem cells. Together, MPN stem cells display a unique phenotype, including cytokine receptors, immune checkpoint molecules, and other clinically relevant target antigens. Phenotypic characterization of neoplastic stem cells in MPN and sAML should facilitate their enrichment and the development of stem cell-eradicating (curative) therapies.
Collapse
Affiliation(s)
- Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | | | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Radiation OncologyMedical University of ViennaViennaAustria
| | - Barbara Peter
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Michael Willmann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department for Companion Animals, Clinical Unit for Internal MedicineUniversity of Veterinary Medicine ViennaViennaAustria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Ihr Labor, Medical Diagnostic LaboratoriesViennaAustria
| | - Katharina Slavnitsch
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Emir Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department for Companion Animals, Clinical Unit for Internal MedicineUniversity of Veterinary Medicine ViennaViennaAustria
| | - Thomas Rülicke
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Biomedical SciencesUniversity of Veterinary Medicine ViennaViennaAustria
| | - Maik Dahlhoff
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- MLL Munich Leukemia LaboratoryMunichGermany
| | - Sigrid Machherndl‐Spandl
- Hospital Ordensklinikum Elisabethinen LinzLinzAustria
- Johannes Kepler University, Medical FacultyLinzAustria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Michael Fillitz
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Thamer Sliwa
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Maria‐Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | | | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Elisabeth Koller
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Michael Pfeilstöcker
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Heinz Gisslinger
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Felix Keil
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Robert Kralovics
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| |
Collapse
|