1
|
Ge X, Zhang K, Zhu J, Chen Y, Wang Z, Wang P, Xu P, Yao J. Targeting protein modification: a new direction for immunotherapy of pancreatic cancer. Int J Biol Sci 2025; 21:63-74. [PMID: 39744438 PMCID: PMC11667816 DOI: 10.7150/ijbs.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional groups to substrates, influencing their biological activity, mechanisms of action, and functional performance. PTMs and their interactions are essential to many critical signal transduction processes, including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, transport, and energy metabolism. This study aimed to investigate the effects of different PTMs on immunotherapy for pancreatic cancer, providing new perspectives and suggesting directions for future research.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Ke Zhang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Jiangsu 225000, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| |
Collapse
|
2
|
Hou J, Guo M, Li Y, Liao Y. Lactylated histone H3K18 as a potential biomarker for the diagnosis and prediction of the severity of pancreatic cancer. Clinics (Sao Paulo) 2024; 80:100544. [PMID: 39591911 PMCID: PMC11629241 DOI: 10.1016/j.clinsp.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/26/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lactylation plays an essential role in pancreatic cancer, but the precise role of lactylated histone in the diagnosis and prognosis of pancreatic cancer remains to be further clarified. METHODS Twenty-one patients diagnosed with pancreatic cancer were enrolled in this study, and the clinicopathologic characteristics were collected. Lactylation levels of total proteins and histone H3 Lysine-18 (H3K18) of tissues were determined by western blotting and laboratory indicators including serum levels of lactate, Cancer Antigen 19-9 (CA19-9), and Carcinoembryogenic Antigen (CEA) were obtained. RESULTS Total protein lactylation was found in both pancreatic cancer tissues and para-carcinoma normal tissues, and was more potent in tumor tissues. H3K18la was also highly expressed tumor tissues. Furthermore, H3K18la protein expression correlated positively with serum lactate (r = 0.774, p < 0.001), CA19-9 (r = 0.744, p < 0.001), and CEA (r = 0.589, p < 0.01). The Area Under the Curve (AUC) of H3K18la for the diagnosis of pancreatic cancer was 0.848 in serum (p < 0.001). CONCLUSION The present findings suggested that H3K18 may be used as a novel potential biomarker for the diagnosis and prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Jinping Hou
- Department of Hepatological Surgery, The Sixth People's Hospital of Chengdu, Chengdu, PR China.
| | - Mingsong Guo
- Department of Hepatological Surgery, The Sixth People's Hospital of Chengdu, Chengdu, PR China
| | - Yongqiong Li
- Department of Emergency, The Second People's Hospital of Chengdu, Chengdu, PR China
| | - Yijin Liao
- Chengdu Qinglong Community Health Service Center, Chengdu, PR China
| |
Collapse
|
3
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Raskov H, Orhan A, Agerbæk MØ, Gögenur I. The impact of platelets on the metastatic potential of tumour cells. Heliyon 2024; 10:e34361. [PMID: 39114075 PMCID: PMC11305202 DOI: 10.1016/j.heliyon.2024.e34361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In cancer, activation of platelets by tumor cells is critical to disease progression. Development of precise antiplatelet targeting may improve outcomes from anticancer therapy. Alongside a distinct shift in functionality such as pro-metastatic and pro-coagulant properties, platelet production is often accelerated significantly early in carcinogenesis and the cancer-associated thrombocytosis increases the risk of metastasis formation and thromboembolic events. Tumor-activated platelets facilitate the proliferation of migrating tumor cells and shield them from immune surveillance and physical stress during circulation. Additionally, platelet-tumor cell interactions promote tumor cell intravasation, intravascular arrest, and extravasation through a repertoire of adhesion molecules, growth factors and angiogenic factors. Particularly, the presence of circulating tumor cell (CTC) clusters in association with platelets is a negative prognostic indicator. The contribution of platelets to the metastatic process is an area of intense investigation and this review provides an overview of the advances in understanding platelet-tumor cell interactions and their contribution to disease progression. Also, we review the potential of targeting platelets to interfere with the metastatic process.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Mette Ørskov Agerbæk
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
McDermott JG, Goodlett BL, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Mitchell BM. Inflammatory Alterations to Renal Lymphatic Endothelial Cell Gene Expression in Mouse Models of Hypertension. Kidney Blood Press Res 2024; 49:588-604. [PMID: 38972305 PMCID: PMC11345939 DOI: 10.1159/000539721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
INTRODUCTION Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p < 0.01), 274 significantly enriched pathways (p < 0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.
Collapse
Affiliation(s)
- Justin G. McDermott
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807
| |
Collapse
|
6
|
Lu Y, Zhou T, Lu M. A prognostic binary classifier comprised of five critical mRNAs stratified pancreatic cancer patients following resection. Heliyon 2024; 10:e31302. [PMID: 38828350 PMCID: PMC11140619 DOI: 10.1016/j.heliyon.2024.e31302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Background Pancreatic cancer is characterized by an extremely poor prognosis, even following potentially curative resection. Classical prognostic markers such as histopathological or clinical parameters have limited predictive power. The present study aimed to establish a prognostic model combining mRNA expression data with histopathological and clinical data to better predict survival and stratify pancreatic cancer patients following resection. We pioneered three models in one study and systematically evaluated the clinical benefits of all three models. Methods To identify differentially expressed genes in pancreatic cancer, mRNA data from normal (GTEx database) and pancreatic cancer (TCGA database) tissues were used. Survival analysis was carried out to identify prognosis-relevant genes from the identified differentially expressed genes and LASSO regression was used to filter out hub genes. The risk score of several hub genes was calculated according to gene expression and coefficients. Validation was carried out using an independent set of GEO microarray data. Multivariate COX regression was used for identifying independent clinical and pathological risk factors related to patient's survival in the TCGA database and a prognostic model combining mRNA expression data with histopathological and clinical data was established. Another prognostic model using clinicopathological factors from the SEER database was conceived based on multivariate COX regression. NRI (net reclassification improvement) and IDI (integrated discrimination index) were used to compare the predictive capabilities of the different models. Results We identified 1589 differentially expressed genes (DEGs) through the comparison of normal and pancreatic cancer tissues, of whom 317 were associated with prognosis(p < 0.05). LASSO regression identified five hub genes, MYEOV, ANXA2P2, MET, CEP55, and KRT7, that were used for the five-mRNA-classifier prognostic model. The classifier could stratify patients into a short and long survival group: 5-year overall survival in the training set (TCGA, 6 % vs 52 %, p < 0.001), test set (TCGA, 18 % vs 55 %,p < 0.01) and external validation set (GEO, 0 % vs 25 %, p < 0.05). Sensitivity analysis showed that the mRNA model (model 1) was better than the clinicopathological no-mRNA model (model 2) in predicting 5-year survival in the TCGA database (AUC: 0.877 vs 0.718, z = 3.165, p < 0.01) and better than the multi-factor prognostic model (model 3) from the SEER database (AUC: 0.754, z = 2.637, p < 0.01). On predictive performance, model 1 improved model 2 (NRI = 0.084, z = 1.288, p = 0.198; IDI = 0.055, z = 1.041,p = 0.298) and model 3 (NRI = 0.167,z = 1.961,p = 0.05; IDI = 0.086, z = 1.427, p = 0.154). Conclusion The five-mRNA-classifier is a reliable and feasible instrument to predict the prognosis of pancreatic cancer patients following resection. It might help in patiens counseling and assist clinicians in providing individualized treatment for patients in different risk groups.
Collapse
Affiliation(s)
- Yueqing Lu
- Hepatobiliary and Vascular Surgery, People's Hospital Affiliated to Shandong First Medical University, 271199, Shandong Province, China
| | - Tong Zhou
- Hepatobiliary and Vascular Surgery, People's Hospital Affiliated to Shandong First Medical University, 271199, Shandong Province, China
| | - Mingshu Lu
- Hepatobiliary and Vascular Surgery, People's Hospital Affiliated to Shandong First Medical University, 271199, Shandong Province, China
| |
Collapse
|
7
|
Zhang S, Yun D, Yang H, Eckstein M, Elbait GD, Zhou Y, Lu Y, Yang H, Zhang J, Dörflein I, Britzen-Laurent N, Pfeffer S, Stemmler MP, Dahl A, Mukhopadhyay D, Chang D, He H, Zeng S, Lan B, Frey B, Hampel C, Lentsch E, Gollavilli PN, Büttner C, Ekici AB, Biankin A, Schneider-Stock R, Ceppi P, Grützmann R, Pilarsky C. Roflumilast inhibits tumor growth and migration in STK11/LKB1 deficient pancreatic cancer. Cell Death Discov 2024; 10:124. [PMID: 38461159 PMCID: PMC10924943 DOI: 10.1038/s41420-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system. It is highly aggressive, easily metastasizes, and extremely difficult to treat. This study aimed to analyze the genes that might regulate pancreatic cancer migration to provide an essential basis for the prognostic assessment of pancreatic cancer and individualized treatment. A CRISPR knockout library directed against 915 murine genes was transfected into TB 32047 cell line to screen which gene loss promoted cell migration. Next-generation sequencing and PinAPL.py- analysis was performed to identify candidate genes. We then assessed the effect of serine/threonine kinase 11 (STK11) knockout on pancreatic cancer by wound-healing assay, chick agnosia (CAM) assay, and orthotopic mouse pancreatic cancer model. We performed RNA sequence and Western blotting for mechanistic studies to identify and verify the pathways. After accelerated Transwell migration screening, STK11 was identified as one of the top candidate genes. Further experiments showed that targeted knockout of STK11 promoted the cell migration and increased liver metastasis in mice. Mechanistic analyses revealed that STK11 knockout influences blood vessel morphogenesis and is closely associated with the enhanced expression of phosphodiesterases (PDEs), especially PDE4D, PDE4B, and PDE10A. PDE4 inhibitor Roflumilast inhibited STK11-KO cell migration and tumor size, further demonstrating that PDEs are essential for STK11-deficient cell migration. Our findings support the adoption of therapeutic strategies, including Roflumilast, for patients with STK11-mutated pancreatic cancer in order to improve treatment efficacy and ultimately prolong survival.
Collapse
Affiliation(s)
- Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Duo Yun
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hao Yang
- Experimental Tumor pathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gihan Daw Elbait
- Department of Biology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yaxing Zhou
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yanxi Lu
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jinping Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabella Dörflein
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center a DFG NGS Competence Center; TU Dresden, 01307, Dresden, Germany
| | - Debabrata Mukhopadhyay
- Departments of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, USA
| | - David Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Hang He
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Siyuan Zeng
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Bin Lan
- Department of Interventional Radiology and Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, China
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Chuanpit Hampel
- Experimental Tumor pathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eva Lentsch
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paradesi Naidu Gollavilli
- Department of Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Odense, Denmark
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrew Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Regine Schneider-Stock
- Experimental Tumor pathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paolo Ceppi
- Department of Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Odense, Denmark
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
8
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Jin LY, Yu JE, Xu HY, Chen B, Yang Q, Liu Y, Guo MX, Zhou CL, Cheng Y, Pang HY, Wu HY, Sheng JZ, Huang HF. Overexpression of Pde4d in rat granulosa cells inhibits maturation and atresia of antral follicles to induce polycystic ovary. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166869. [PMID: 37673361 DOI: 10.1016/j.bbadis.2023.166869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Follicle dysplasia can cause polycystic ovary syndrome, which can lead to anovulatory infertility. This study explored gene(s) that may contribute to polycystic ovary syndrome. METHODS Three animal models of polycystic ovary syndrome were created by treating 3-week-old rats respectively with estradiol valerate, testosterone propionate, or constant illumination for 8 weeks. Granulosa cells from the three disease groups and from healthy controls were transcriptionally profiled to identify differentially expressed genes. The phosphodiesterase-4d (Pde4d) was screened as the most promising candidate pathogenic gene. The Pde4d was overexpressed in rats via intrabursal infection with recombinant lentivirus to see the effect of Pde4d on ovarian morphology. The potential roles of the candidate gene and interactors of the encoded protein were explored using polymerase chain reaction, western blotting, transfection and co-immunoprecipitation. RESULTS All three rat models of polycystic ovary syndrome showed polycystic ovary phenotype. Seven promising candidate genes were obtained by transcriptomics and verifications. Pde4d was further investigated because it could trigger downstream signaling pathways. The Pde4d overexpression in rat ovary induced cystic follicles. It inhibited follicle maturation through a mechanism involving inhibition of cAMP-PKA-CREB signaling. The Pde4d also inhibited phosphorylation of c-Jun N-terminal kinase to reduce apoptosis in the ovary, through a mechanism involving interaction of its poly-proline domain with the protein POSH. CONCLUSION Upregulation of Pde4d may contribute to polycystic ovary syndrome by impeding follicle maturation and preventing apoptotic atresia.
Collapse
Affiliation(s)
- Lu-Yang Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Gynecology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-En Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Yan Xu
- Reproductive Medicine Center, Ningbo First Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Bin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Qian Yang
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Liu
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Xi Guo
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Liang Zhou
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Hai-Yan Pang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Yan Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jian-Zhong Sheng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China.
| |
Collapse
|