1
|
Yang L, Tian Y, Cao X, Wang J, Luo B. Identification of novel diagnostic biomarkers associated with liver metastasis in colon adenocarcinoma by machine learning. Discov Oncol 2024; 15:542. [PMID: 39390264 PMCID: PMC11467158 DOI: 10.1007/s12672-024-01398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Liver metastasis is one of the primary causes of poor prognosis in colon adenocarcinoma (COAD) patients, but there are few studies on its biomarkers. METHODS The Cancer Genome Atlas (TCGA)-COAD, GSE41258, and GSE49355 datasets were acquired from the public database. Differentially expressed genes (DEGs) between liver metastasis and primary tumor samples in COAD were identified by limma, and functional enrichment analysis were performed. MuTect2 and maftools were used to measure somatic mutation rates, while ADTEx was used to measure copy number variations (CNVs). The intersection of three machine learning methods, support vector machine (SVM), Random Forest, and least absolute shrinkage and selection operator (LASSO), is utilized to screen biomarkers, and their diagnostic performance is subsequently validated. The correlation between biomarkers and immune cells infiltration was analyzed by Spearman method. RESULTS 47 DEGs between liver metastasis and primary tumor samples in COAD were obtained, which were mainly enriched in the complement and coagulation, extracellular matrix (ECM), and peptidase regulator activity, etc. 38 out of 47 DEGs had mutations and exhibited a high frequency of CNV amplification or deletion. Furthermore, 3 biomarkers (MMP3, MAB21L2, and COLEC11) were screened, which showed good diagnostic performance. The proportion of multiple immune cells, such as B cells naive, T cells CD4 naive, Monocytes, and Dendritic cells resting, was higher in liver metastasis samples than that in primary tumor samples. Meanwhile, MMP3, MAB21L2, and COLEC11 exhibited an outstanding correlation with immune cells infiltration. CONCLUSION In short, 3 biomarkers with good diagnostic efficacy were identified, providing a new perspective of therapeutic targets for liver metastasis in COAD.
Collapse
Affiliation(s)
- Long Yang
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Ye Tian
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Xiaofei Cao
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Jiawei Wang
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Baoyang Luo
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
2
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Niveau C, Sosa Cuevas E, Saas P, Aspord C. Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy. Immunology 2024; 173:33-52. [PMID: 38742251 DOI: 10.1111/imm.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
4
|
Mo J, Li J, Qiu L, Wang Y, Mu L, Ye J. Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2024; 25:2508. [PMID: 38473757 DOI: 10.3390/ijms25052508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Collectin-K1 (CL-K1) is a multifunctional C-type lectin that has been identified as playing a crucial role in innate immunity. It can bind to carbohydrates on pathogens, leading to direct neutralization, agglutination, and/or opsonization, thereby inhibiting pathogenic infection. In this study, we investigated a homolog of CL-K1 (OnCL-K1) in Nile tilapia (Oreochromis niloticus) and its role in promoting the clearance of the pathogen Streptococcus agalactiae (S. agalactiae) and enhancing the antibacterial ability of the fish. Our analysis of bacterial load displayed that OnCL-K1 substantially reduced the amount of S. agalactiae in tissues of the liver, spleen, anterior kidney, and brain in Nile tilapia. Furthermore, examination of tissue sections revealed that OnCL-K1 effectively alleviated tissue damage and inflammatory response in the liver, anterior kidney, spleen, and brain tissue of tilapia following S. agalactiae infection. Additionally, OnCL-K1 was found to decrease the expression of the pro-inflammatory factor IL-6 and migration inhibitor MIF, while increasing the expression of anti-inflammatory factor IL-10 and chemokine IL-8 in the spleen, anterior kidney, and brain tissues of tilapia. Moreover, statistical analysis of survival rates demonstrated that OnCL-K1 significantly improved the survival rate of tilapia after infection, with a survival rate of 90%. Collectively, our findings suggest that OnCL-K1 plays a vital role in the innate immune defense of resisting bacterial infection in Nile tilapia. It promotes the removal of bacterial pathogens from the host, inhibits pathogen proliferation in vivo, reduces damage to host tissues caused by pathogens, and improves the survival rate of the host.
Collapse
Affiliation(s)
- Jinfeng Mo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yiqing Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Mu L, Yin X, Qiu L, Li J, Mo J, Bai H, Zeng Q, Ye J. CL-K1 Promotes Complement Activation and Regulates Opsonophagocytosis of Macrophages with CD93 Interaction in a Primitive Vertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:645-662. [PMID: 38180157 PMCID: PMC10828182 DOI: 10.4049/jimmunol.2300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Collectin is a crucial component of the innate immune system and plays a vital role in the initial line of defense against pathogen infection. In mammals, collectin kidney 1 (CL-K1) is a soluble collectin that has recently been identified to have significant functions in host defense. However, the evolutionary origins of immune defense of CL-K1 and its mechanism in clearance of pathogenic microorganisms remain unclear, especially in early vertebrates. In this study, the Oreochromis niloticus CL-K1 (OnCL-K1) protein was purified and identified, which was capable of binding to two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, OnCL-K1 exhibited direct bactericidal activity by binding to lipoteichoic acid or LPS on cell walls, disrupting the permeability and integrity of the bacterial membrane in vitro. Upon bacterial challenge, OnCL-K1 significantly inhibited the proliferation of pathogenic bacteria, reduced the inflammatory response, and improved the survival of tilapia. Further research revealed that OnCL-K1 could associate with OnMASPs to initiate and regulate the lectin complement pathway. Additionally, OnCD93 reduced the complement-mediated hemolysis by competing with OnMASPs for binding to OnCL-K1. More importantly, OnCL-K1 could facilitate phagocytosis by collaborating with cell surface CD93 in a lectin pathway-independent manner. Moreover, OnCL-K1 also promoted the formation of phagolysosomes, which degraded and killed ingested bacteria. Therefore, this study reveals the antibacterial response mechanism of CL-K1 in primitive vertebrates, including promoting complement activation, enhancing opsonophagocytosis, and killing of macrophages, as well as its internal links, all of which provide (to our knowledge) new insights into the understanding of the evolutionary origins and regulatory roles of the collectins in innate immunity.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Xiaoxue Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Jinfen Mo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Hao Bai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Qingliang Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People’s Republic of China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Niveau C, Sosa Cuevas E, Roubinet B, Pezet M, Thépaut M, Mouret S, Charles J, Fieschi F, Landemarre L, Chaperot L, Saas P, Aspord C. Melanoma tumour-derived glycans hijack dendritic cell subsets through C-type lectin receptor binding. Immunology 2024; 171:286-311. [PMID: 37991344 DOI: 10.1111/imm.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | | | - Mylène Pezet
- Institute for Advanced Biosciences, Plateforme de Microscopie Photonique-Imagerie Cellulaire et Cytométrie en Flux (Microcell), Inserm U1209-CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Stéphane Mouret
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Julie Charles
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Laurence Chaperot
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| |
Collapse
|
7
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
8
|
Rastmanesh R, Bowirrat A, Gupta A, Gilley E, Blum K. Anti(angiogenic) food components: can be a major source of bias in the investigation of angiogenesis inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:419. [PMID: 38213800 PMCID: PMC10777223 DOI: 10.21037/atm-23-1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/24/2023] [Indexed: 01/13/2024]
Abstract
Background Natural and diet-derived angiogenesis inhibitors/promotors are widely found in diets. These compounds can in several ways impact the results of oncological research of angiogenesis inhibitors. Methods We very briefly overview some of the most important examples to show how these compounds can create a bias in current research of cancer. Implications of this expert opinion cover similar angiogenesis-related diseases. Results Significant intra-individual differences in terms of dietary intake and differential effect of food processing techniques result in differential bioactivity and bioavailability of these compounds. There are only a handful of validated dietary questionnaire to quantify natural angiogenesis inhibitors/promotors. A corollary consequence is that participants in non-randomized clinical trials will have different baseline levels of serum/plasma/tissue/organ diet-derived angiogenesis inhibitors/promotors. This will lead to creation of clinical uncertainty and a hidden bias and consequently creation of translational efficiency bias, sampling efficiency, and waste of resources. We call for developing and validating a semi-quantitative food frequency questionnaire (FFQ) to gather data on these agents, specifically designed for oncological research because there is a clear gap in the literature of oncology. Conclusions This might facilitate the discovery of better prognostic, diagnostic, preventive measures, and therapeutic agents for the management of different cancers. Implications of this paper cover similar settings like ophthalmologic research.
Collapse
Affiliation(s)
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Elizabeth Gilley
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|