1
|
Esmaeilzadeh A, Hadiloo K, Yaghoubi S, Makoui MH, Mostanadi P. State of the art in CAR-based therapy: In vivo CAR production as a revolution in cell-based cancer treatment. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01056-7. [PMID: 40261561 DOI: 10.1007/s13402-025-01056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Chimeric antigen receptor (CAR) therapy has successfully treated relapsed/refractory hematological cancers. This strategy can effectively target tumor cells. However, despite positive outcomes in clinical applications, challenges remain to overcome. These hurdles pertain to the production of the drugs, solid tumor resistance, and side effects related to the treatment. Some cases have been missed during the drug preparation due to manufacturing issues, prolonged production times, and high costs. These challenges mainly arise from the in vitro manufacturing process, so reevaluating this process could minimize the number of missed patients. The immune cells are traditionally collected and sent to the laboratory; after several steps, the cells are modified to express the CAR gene before being injected back into the patient's body. During the in vivo method, the CAR gene is introduced to the immune cells inside the body. This allows for treatment to begin sooner, avoiding potential failures in drug preparation and the associated high costs. In this review, we will elaborate on the production and treatment process using in vivo CAR, examine the benefits and challenges of this approach, and ultimately present the available solutions for incorporating this treatment into clinical practice.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Pficell R&D Canadian Institution & Corporation, Profound Future Focused Innovative Cell and Gene Therapy, Pficell Canadian Institution and Corporation, Ontario, Canada.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kaveh Hadiloo
- Pficell R&D Canadian Institution & Corporation, Profound Future Focused Innovative Cell and Gene Therapy, Pficell Canadian Institution and Corporation, Ontario, Canada
- Department of Surgery, Velayat Clinical Research Development Unit, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan, Iran
| | - Sara Yaghoubi
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan, Iran
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Parsa Mostanadi
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan, Iran
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Wu L, Zhu L, Chen J. Diverse potential of chimeric antigen receptor-engineered cell therapy: Beyond cancer. Clin Transl Med 2025; 15:e70306. [PMID: 40205818 PMCID: PMC11982526 DOI: 10.1002/ctm2.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-engineered cell therapies have made significant progress in haematological cancer treatment. This success has motivated researchers to investigate its potential applications in non-cancerous diseases, with substantial strides already made in this field. MAIN BODY This review summarises the latest research on CAR-engineered cell therapies, with a particular focus on CAR-T cell therapy for non-cancerous diseases, including but not limited to infectious diseases, autoimmune diseases, cardiac diseases and immune-mediated disorders in transplantation. Additionally, the review discusses the current obstacles that need to be addressed for broader clinical applications. CONCLUSION With ongoing research and continuous improvements, CAR-engineered cell therapy holds promise as a potent tool for treating various diseases in the future. KEY POINTS CAR-engineered cell therapy has expanded beyond cancer to treat autoimmune diseases, infections, cardiac diseases, and transplant-related rejection. The CAR platform is diverse, with various cell types such as CAR-T, CAR-NK, and CAR-M potentially suited for different disease contexts. The safety, efficacy, and practicality of CAR cell therapy in non-cancer diseases remain challenging, requiring further technological optimization and clinical translation.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Lingfeng Zhu
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Jin Chen
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
3
|
Lin MH, Hu LJ, Miller JS, Huang XJ, Zhao XY. CAR-NK cell therapy: a potential antiviral platform. Sci Bull (Beijing) 2025; 70:765-777. [PMID: 39837721 DOI: 10.1016/j.scib.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Viral infections persist as a significant cause of morbidity and mortality worldwide. Conventional therapeutic approaches often fall short in fully eliminating viral infections, primarily due to the emergence of drug resistance. Natural killer (NK) cells, one of the important members of the innate immune system, possess potent immunosurveillance and cytotoxic functions, thereby playing a crucial role in the host's defense against viral infections. Chimeric antigen receptor (CAR)-NK cell therapy has been developed to redirect the cytotoxic function of NK cells specifically towards virus-infected cells, further enhancing their cytotoxic efficacy. In this manuscript, we review the role of NK cells in antiviral infections and explore the mechanisms by which viruses evade immune detection. Subsequently, we focus on the optimization strategies for CAR-NK cell therapy to address existing limitations. Furthermore, we discuss significant advancements in CAR-NK cell therapy targeting viral infections, including those caused by severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, hepatitis B virus, human cytomegalovirus, and Epstein-Barr virus.
Collapse
Affiliation(s)
- Ming-Hao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China.
| |
Collapse
|
4
|
Mu W, Tomer S, Harding J, Kedia N, Rezek V, Cook E, Patankar V, Carrillo MA, Martin H, Ng H, Wang L, Marsden MD, Kitchen SG, Zhen A. Rapamycin enhances CAR-T control of HIV replication and reservoir elimination in vivo. J Clin Invest 2025; 135:e185489. [PMID: 39932788 PMCID: PMC11957703 DOI: 10.1172/jci185489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy shows promise for various diseases. Our studies in humanized mice and nonhuman primates demonstrate that hematopoietic stem cells (HSCs) modified with anti-HIV CAR achieve lifelong engraftment, providing functional antiviral CAR-T cells that reduce viral rebound after antiretroviral therapy (ART) withdrawal. However, T cell exhaustion due to chronic immune activation remains a key obstacle to sustained CAR-T efficacy, necessitating additional measures to achieve functional cure. We recently showed that low-dose rapamycin treatment reduced inflammation and improved anti-HIV T cell function in HIV-infected humanized mice. Here, we report that rapamycin improved CAR-T cell function both in vitro and in vivo. In vitro treatment with rapamycin enhanced CAR-T cell mitochondrial respiration and cytotoxicity. In vivo treatment with low-dose rapamycin in HIV-infected, CAR-HSC mice decreased chronic inflammation, prevented exhaustion of CAR-T cells, and improved CAR-T control of viral replication. RNA-sequencing analysis of CAR-T cells from humanized mice showed that rapamycin downregulated multiple checkpoint inhibitors and upregulated key survival genes. Mice treated with CAR-HSCs and rapamycin had delayed viral rebound after ART and reduced HIV reservoir compared with those treated with CAR-HSCs alone. These findings suggest that HSC-based anti-HIV CAR-T cells combined with rapamycin treatment are a promising approach for treating persistent inflammation and improving immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey Harding
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nandita Kedia
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ethan Cook
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Vaibahavi Patankar
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hwee Ng
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Wang
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Matthew D. Marsden
- Department of Microbiology & Molecular Genetics and
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
5
|
Kitte R, Serfling R, Blache U, Seitz C, Schrader S, Köhl U, Fricke S, Bär C, Tretbar US. Optimal Chimeric Antigen Receptor (CAR)-mRNA for Transient CAR T Cell Generation. Int J Mol Sci 2025; 26:965. [PMID: 39940734 PMCID: PMC11818003 DOI: 10.3390/ijms26030965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) are becoming increasingly important in the treatment of hematologic malignancies and are also intensively being investigated for other diseases such as autoimmune disorders and HIV. Current CAR T cell therapies predominantly use viral transduction methods which, despite their efficacy, raise safety concerns related to genomic integration and potentially associated malignancies as well as labor- and cost-intensive manufacturing. Therefore, non-viral gene transfer methods, especially mRNA-based approaches, have attracted research interest due to their transient modification and enhanced safety profile. In this study, the optimization of CAR-mRNA for T cell applications is investigated, focusing on the impact of mRNA modifications, in vitro transcription protocols, and purification techniques on the translation efficiency and immunogenicity of mRNA. Furthermore, the refined CAR-mRNA was used to generate transient CAR T cells from acute myeloid leukemia patient samples, demonstrating efficacy in vitro and proof-of-concept for clinically relevant settings. These results highlight the potential of optimized mRNA to produce transient and safe CAR T cells.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Reni Kitte
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Robert Serfling
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| | - Claudius Seitz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Selina Schrader
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Medicine Campus MEDiC, Technical University of Dresden, Klinikum Chemnitz gGmbH, 09116 Chemnitz, Germany
| | - Christian Bär
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany;
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - U. Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
7
|
Liu Y, Cai J, Wang T, Wang J, Tang Y, Wan X, Li W, Li B, Cao Q. Glycoprotein 350-targeted chimeric antigen receptor T-cell therapy for nonneoplastic chronic active Epstein-Barr virus infection: a case report. Transl Pediatr 2024; 13:2305-2310. [PMID: 39822998 PMCID: PMC11732635 DOI: 10.21037/tp-24-292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Background Chronic active Epstein-Barr virus (CAEBV) infection is a rare disease in which the Epstein-Barr virus (EBV) persists and replicates, causing chronic symptoms and fatal complications. The treatment of CAEBV is still evolving. Our case report showed a new therapy for CAEBV. Case Description A 14-year-old boy presented with a 10-month history of recurrent diarrhea, intermittent fever, abdominal pain, distension, dizziness, and fatigue. Physical examination findings included severe malnutrition and hepatosplenomegaly. The local hospital's test results showed that the load of EBV DNA in peripheral blood was 5.99×106 copies/mL. Despite treatment with acyclovir, chemotherapy, and supportive care, the symptoms persisted. We determined the lymphocyte subtypes of EBV infection by fluorescence quantitative polymerase chain reaction and the expression of EBV envelope glycoprotein 350 (gp350) in peripheral blood lymphocytes. EBV not only infects B cells but also T and NK cells. According to the clinical manifestations, elevated EBV DNA levels, and positive EBV-encoded small RNA (EBER) status, the patient was diagnosed with CAEBV infection. The patient received a conditioning regimen of fludarabine and cyclophosphamide and an intravenous infusion of gp350-targeted chimeric antigen receptor T (CAR T) cells. After infusion, the patient developed grade I cytokine release syndrome (CRS) and was discharged 10 days later. During the follow-up, the EBV-DNA count remained undetectable. Conclusions Our case report showed that CAR T-cell therapy is relatively safe and effective for treating CAEBV in children, with milder CRS compared to that in malignant tumors. However, a greater number of cases are needed to further evaluate the efficacy and safety.
Collapse
Affiliation(s)
- Yandi Liu
- Department of Infectious Diseases, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaoyang Cai
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Wang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Infectious Diseases, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjing Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Wan
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Li
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
English EP, Swingler RN, Patwa S, Tosun M, Howard JF, Miljković MD, Jewell CM. Engineering CAR-T therapies for autoimmune disease and beyond. Sci Transl Med 2024; 16:eado2084. [PMID: 39475572 DOI: 10.1126/scitranslmed.ado2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor-T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.
Collapse
Affiliation(s)
| | | | - Simran Patwa
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - Mehmet Tosun
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - James F Howard
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | | |
Collapse
|
9
|
Hiner CR, Mueller AL, Su H, Goldstein H. Interventions during Early Infection: Opening a Window for an HIV Cure? Viruses 2024; 16:1588. [PMID: 39459922 PMCID: PMC11512236 DOI: 10.3390/v16101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although combination antiretroviral therapy (ART) has been a landmark achievement for the treatment of human immunodeficiency virus (HIV), an HIV cure has remained elusive. Elimination of latent HIV reservoirs that persist throughout HIV infection is the most challenging barrier to an HIV cure. The progressive HIV infection is marked by the increasing size and diversity of latent HIV reservoirs until an effective immune response is mobilized, which can control but not eliminate HIV infection. The stalemate between HIV replication and the immune response is manifested by the establishment of a viral set point. ART initiation during the early stage limits HIV reservoir development, preserves immune function, improves the quality of life, and may lead to ART-free viral remission in a few people living with HIV (PLWH). However, for the overwhelming majority of PLWH, early ART initiation alone does not cure HIV, and lifelong ART is needed to sustain viral suppression. A critical area of research is focused on determining whether HIV could be functionally cured if additional treatments are provided alongside early ART. Several HIV interventions including Block and Lock, Shock and Kill, broadly neutralizing antibody (bNAb) therapy, adoptive CD8+ T cell therapy, and gene therapy have demonstrated delayed viral rebound and/or viral remission in animal models and/or some PLWH. Whether or not their application during early infection can improve the success of HIV remission is less studied. Herein, we review the current state of clinical and investigative HIV interventions and discuss their potential to improve the likelihood of post-treatment remission if initiated during early infection.
Collapse
Affiliation(s)
- Christopher R. Hiner
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - April L. Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Rubinstein PG, Galvez C, Ambinder RF. Hematopoietic stem cell transplantation and cellular therapy in persons living with HIV. Curr Opin Infect Dis 2024; 37:254-263. [PMID: 38820072 DOI: 10.1097/qco.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
PURPOSE OF REVIEW Summarize the latest research of both stem cell transplantation and cellular therapy and present the implications with respect to persons with HIV (PWH), hematologic malignancies, and HIV-1 cure. RECENT FINDINGS Allogeneic (alloSCT) and autologous (autoSCT) stem cell transplantation have been shown to be well tolerated and effective regardless of HIV-1 status. AlloSCT leads to a decrease in the HIV-1 latently infected reservoir orders of magnitude below that achieved with antiretroviral therapy (ART) alone. Utilization of CCR5Δ2/Δ32 donors in an alloSCT has resulted in HIV-1 cures. In the last 12 months, three cases of cure have been published, giving further insight into the conditions required for HIV-1 control. Other advances in the treatment of hematological cancers include chimeric antigen receptor T-cell (CART) therapy, which are active in PWH with lymphoma. SUMMARY Here we discuss the advances in SCT and cellular therapy in PWH and cancer. Additionally, we discuss how these technologies are being utilized to achieve HIV-1 cure.
Collapse
Affiliation(s)
- Paul G Rubinstein
- Section of Hematology/Oncology, Department of Medicine, University of Illinois
- Ruth M. Rothstein CORE Center
- Section of Hematology/Oncology, Department of Medicine, Cook County Health and Hospital Systems (Cook County Hospital), Chicago, Illinois
| | - Carlos Galvez
- Section of Hematology/Oncology, Department of Medicine, University of Illinois
| | - Richard F Ambinder
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
12
|
Su H, Mueller A, Goldstein H. Recent advances on anti-HIV chimeric antigen receptor-T-cell treatment to provide sustained HIV remission. Curr Opin HIV AIDS 2024; 19:169-178. [PMID: 38695148 PMCID: PMC11981014 DOI: 10.1097/coh.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Successful sustained remission of HIV infection has been achieved after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation for treatment of leukemia in a small cohort of people living with HIV (PLWH). This breakthrough demonstrated that the goal of curing HIV was achievable. However, the high morbidity and mortality associated with bone marrow transplantation limits the routine application of this approach and provides a strong rationale for pursuing alternative strategies for sustained long-term antiretroviral therapy (ART)-free HIV remission. Notably, long-term immune-mediated control of HIV replication observed in elite controllers and posttreatment controllers suggests that potent HIV-specific immune responses could provide sustained ART-free remission in PLWH. The capacity of chimeric antigen receptor (CAR)-T cells engineered to target malignant cells to induce remission and cure in cancer patients made this an attractive approach to provide PLWH with a potent HIV-specific immune response. Here, we review the recent advances in the design and application of anti-HIV CAR-T-cell therapy to provide a functional HIV cure. RECENT FINDINGS HIV reservoirs are established days after infection and persist through clonal expansion of infected cells. The continuous interaction between latently infected cells and the immune system shapes the landscape of HIV latency and likely contributes to ART-free viral control in elite controllers. CAR-T cells can exhibit superior antiviral activity as compared with native HIV-specific T cells, particularly because they can be engineered to have multiple HIV specificities, resistance to HIV infection, dual costimulatory signaling, immune checkpoint inhibitors, stem cell derivation, CMV TCR coexpression, and tissue homing ligands. These modifications can significantly improve the capacities of anti-HIV CAR-T cells to prevent viral escape, resist HIV infection, and enhance cytotoxicity, persistence, and tissue penetration. Collectively, these novel modifications of anti-HIV CAR-T cell design have increased their capacity to control HIV infection. SUMMARY Anti-HIV CAR-T cells can be engineered to provide potent and sustained in-vitro and in-vivo antiviral function. The combination of anti-HIV CAR-T cells with other immunotherapeutics may contribute to long-term HIV remission in PLWH.
Collapse
Affiliation(s)
- Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, U.S.A
| | - April Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, U.S.A
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, U.S.A
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, U.S.A
| |
Collapse
|
13
|
Shu J, Xie W, Chen Z, Offringa R, Hu Y, Mei H. The enchanting canvas of CAR technology: Unveiling its wonders in non-neoplastic diseases. MED 2024; 5:495-529. [PMID: 38608709 DOI: 10.1016/j.medj.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a groundbreaking advancement in personalized immunotherapy and achieved widespread success in hematological malignancies. As CAR technology continues to evolve, numerous studies have unveiled its potential far beyond the realm of oncology. This review focuses on the current applications of CAR-based cellular platforms in non-neoplastic indications, such as autoimmune, infectious, fibrotic, and cellular senescence-associated diseases. Furthermore, we delve into the utilization of CARs in non-T cell populations such as natural killer (NK) cells and macrophages, highlighting their therapeutic potential in non-neoplastic conditions and offering the potential for targeted, personalized therapies to improve patient outcomes and enhanced quality of life.
Collapse
Affiliation(s)
- Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
14
|
Mastrangelo A, Gama L, Cinque P. Strategies to target the central nervous system HIV reservoir. Curr Opin HIV AIDS 2024; 19:133-140. [PMID: 38457227 DOI: 10.1097/coh.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF THE REVIEW The central nervous system (CNS) is an hotspot for HIV persistence and may be a major obstacle to overcome for curative strategies. The peculiar anatomical, tissular and cellular characteristics of the HIV reservoir in the CNS may need to be specifically addressed to achieve a long-term HIV control without ART. In this review, we will discuss the critical challenges that currently explored curative strategies may face in crossing the blood-brain barrier (BBB), targeting latent HIV in brain-resident myeloid reservoirs, and eliminating the virus without eliciting dangerous neurological adverse events. RECENT FINDINGS Latency reversing agents (LRA), broadly neutralizing monoclonal antibodies (bNabs), chimeric antigen receptor (CAR) T-cells, and adeno-associated virus 9-vectored gene-therapies cross the BBB with varying efficiency. Although brain penetration is poor for bNAbs, viral vectors for in vivo gene-editing, certain LRAs, and CAR T-cells may reach the cerebral compartment more efficiently. All these approaches, however, may encounter difficulties in eliminating HIV-infected perivascular macrophages and microglia. Safety, including local neurological adverse effects, may also be a concern, especially if high doses are required to achieve optimal brain penetration and efficient brain cell targeting. SUMMARY Targeting the CNS remains a potential problem for the currently investigated HIV curing strategies. In vivo evidence on CNS effectiveness is limited for most of the investigated strategies, and additional studies should be focused on evaluating the interplay between the cerebral HIV reservoir and treatment aiming to achieve an ART-free cure.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Department of Allergy and Clinical Immunology, Centre Hopitalier Universitaire Vaudoise (CHUV), Lausanne, Switzerland
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Paola Cinque
- Unit of Infectious Diseases and Neurovirology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
15
|
Carrillo MA, Zhen A, Mu W, Rezek V, Martin H, Peterson CW, Kiem HP, Kitchen SG. Stem cell-derived CAR T cells show greater persistence, trafficking, and viral control compared to ex vivo transduced CAR T cells. Mol Ther 2024; 32:1000-1015. [PMID: 38414243 PMCID: PMC11163220 DOI: 10.1016/j.ymthe.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.
Collapse
Affiliation(s)
- Mayra A Carrillo
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wenli Mu
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather Martin
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Li K, Zhang Q. Eliminating the HIV tissue reservoir: current strategies and challenges. Infect Dis (Lond) 2024; 56:165-182. [PMID: 38149977 DOI: 10.1080/23744235.2023.2298450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) is still one of the most widespread and harmful infectious diseases in the world. The presence of reservoirs housing the human immunodeficiency virus (HIV) represents a significant impediment to the development of clinically applicable treatments on a large scale. The viral load in the blood can be effectively reduced to undetectable levels through antiretroviral therapy (ART), and a higher concentration of HIV is sequestered in various tissues throughout the body, forming the tissue reservoir - the source of viremia after interruption treatment. METHODS We take the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a guideline for this review. In June 2023, we used the Pubmed, Embase, and Scopus databases to search the relevant literature published in the last decade. RESULTS Here we review the current strategies and treatments for eliminating the HIV tissue reservoirs: early and intensive therapy, gene therapy (including ribozyme, RNA interference, RNA aptamer, zinc finger enzyme, transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/associated nuclease 9 (CRISPR/Cas9)), 'Shock and Kill', 'Block and lock', immunotherapy (including therapeutic vaccines, broadly neutralising antibodies (bNAbs), chimeric antigen receptor T-cell immunotherapy (CAR-T)), and haematopoietic stem cell transplantation (HSCT). CONCLUSION The existence of an HIV reservoir is the main obstacle to the complete cure of AIDS. Choosing the appropriate strategy to deplete the HIV reservoir and achieve a functional cure for AIDS is the focus and difficulty of current research. So far, there has been a lot of research and progress in reducing the HIV reservoir, but in general, the current research is still very preliminary. Much research is still needed to properly assess the reliability, effectiveness, and necessity of these strategies.
Collapse
Affiliation(s)
- Kangpeng Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Grasberger P, Sondrini AR, Clayton KL. Harnessing immune cells to eliminate HIV reservoirs. Curr Opin HIV AIDS 2024; 19:62-68. [PMID: 38167784 PMCID: PMC10908255 DOI: 10.1097/coh.0000000000000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Despite decades of insights about how CD8 + T cells and natural killer (NK) cells contribute to natural control of infection, additional hurdles (mutational escape from cellular immunity, sequence diversity, and hard-to-access tissue reservoirs) will need to be overcome to develop a cure. In this review, we highlight recent findings of novel mechanisms of antiviral cellular immunity and discuss current strategies for therapeutic deisgn. RECENT FINDINGS Of note are the apparent converging roles of viral antigen-specific MHC-E-restricted CD8 + T cells and NK cells, interleukin (IL)-15 biologics to boost cytotoxicity, and broadly neutralizing antibodies in their native form or as anitbody fragments to neutralize virus and engage cellular immunity, respectively. Finally, renewed interest in myeloid cells as relevant viral reservoirs is an encouraging sign for designing inclusive therapeutic strategies. SUMMARY Several studies have shown promise in many preclinical models of disease, including simian immunodeficiency virus (SIV)/SHIV infection in nonhuman primates and HIV infection in humanized mice. However, each model comes with its own limitations and may not fully predict human responses. We eagerly await the results of clinical trails assessing the efficacy of these strategies to achieve reductions in viral reservoirs, delay viral rebound, or ultimately elicit immune based control of infection without combination antiretroviral therapy (cART).
Collapse
Affiliation(s)
- Paula Grasberger
- Department of Pathology, University of Massachusetts Chan Medical School
| | | | - Kiera L. Clayton
- Department of Pathology, University of Massachusetts Chan Medical School
| |
Collapse
|
18
|
Su H, Anthony-Gonda K, Orentas RJ, Dropulić B, Goldstein H. Generation of Anti-HIV CAR-T Cells for Preclinical Research. Methods Mol Biol 2024; 2807:287-298. [PMID: 38743236 DOI: 10.1007/978-1-0716-3862-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- HIV Infections/immunology
- HIV Infections/therapy
- HIV Infections/virology
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- CD8-Positive T-Lymphocytes/immunology
- HIV-1/immunology
- T-Lymphocytes/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- Hang Su
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | - Harris Goldstein
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
19
|
Matsui Y, Miura Y. Advancements in Cell-Based Therapies for HIV Cure. Cells 2023; 13:64. [PMID: 38201268 PMCID: PMC10778010 DOI: 10.3390/cells13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The treatment of human immunodeficiency virus (HIV-1) has evolved since the establishment of combination antiretroviral therapy (ART) in the 1990s, providing HIV-infected individuals with approaches that suppress viral replication, prevent acquired immunodeficiency syndrome (AIDS) throughout their lifetime with continuous therapy, and halt HIV transmission. However, despite the success of these regimens, the global HIV epidemic persists, prompting a comprehensive exploration of potential strategies for an HIV cure. Here, we offer a consolidated overview of cell-based therapies for HIV-1, focusing on CAR-T cell approaches, gene editing, and immune modulation. Persistent challenges, including CAR-T cell susceptibility to HIV infection, stability, and viral reservoir control, underscore the need for continued research. This review synthesizes current knowledge, highlighting the potential of cellular therapies to address persistent challenges in the pursuit of an HIV cure.
Collapse
Affiliation(s)
- Yusuke Matsui
- Gladstone Institute of Virology, Gladstone Institutes, 1650 Owens St., San Francisco, CA 941578, USA
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
20
|
Li S, Wang H, Guo N, Su B, Lambotte O, Zhang T. Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chin Med J (Engl) 2023; 136:2658-2667. [PMID: 37927030 PMCID: PMC10684145 DOI: 10.1097/cm9.0000000000002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/07/2023] Open
Abstract
ABSTRACT Although antiretroviral therapy (ART) can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus (HIV)-infected individuals, ART alone cannot completely eliminate HIV due to its integration into the host cell genome to form viral reservoirs. To achieve a functional cure for HIV infection, numerous preclinical and clinical studies are underway to develop innovative immunotherapies to eliminate HIV reservoirs in the absence of ART. Early studies have tested adoptive T-cell therapies in HIV-infected individuals, but their effectiveness was limited. In recent years, with the technological progress and great success of chimeric antigen receptor (CAR) therapy in the treatment of hematological malignancies, CAR therapy has gradually shown its advantages in the field of HIV infection. Many studies have identified a variety of HIV-specific CAR structures and types of cytolytic effector cells. Therefore, CAR therapy may be beneficial for enhancing HIV immunity, achieving HIV control, and eliminating HIV reservoirs, gradually becoming a promising strategy for achieving a functional HIV cure. In this review, we provide an overview of the design of anti-HIV CAR proteins, the cell types of anti-HIV CAR (including CAR T cells, CAR natural killer cells, and CAR-encoding hematopoietic stem/progenitor cells), the clinical application of CAR therapy in HIV infection, and the prospects and challenges in anti-HIV CAR therapy for maintaining viral suppression and eliminating HIV reservoirs.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Olivier Lambotte
- Department of Internal Medicine, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, University Paris Saclay, Paris 94270, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
21
|
Wang JY, Wang L. CAR-T cell therapy: Where are we now, and where are we heading? BLOOD SCIENCE 2023; 5:237-248. [PMID: 37941917 PMCID: PMC10629745 DOI: 10.1097/bs9.0000000000000173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapies have exhibited remarkable efficacy in the treatment of hematologic malignancies, with 9 CAR-T-cell products currently available. Furthermore, CAR-T cells have shown promising potential for expanding their therapeutic applications to diverse areas, including solid tumors, myocardial fibrosis, and autoimmune and infectious diseases. Despite these advancements, significant challenges pertaining to treatment-related toxic reactions and relapses persist. Consequently, current research efforts are focused on addressing these issues to enhance the safety and efficacy of CAR-T cells and reduce the relapse rate. This article provides a comprehensive overview of the present state of CAR-T-cell therapies, including their achievements, existing challenges, and potential future developments.
Collapse
Affiliation(s)
- Jia-Yi Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
22
|
Sachdeva M, Taneja S, Sachdeva N. Stem cell-like memory T cells: Role in viral infections and autoimmunity. World J Immunol 2023; 13:11-22. [DOI: 10.5411/wji.v13.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
Stem cell-like memory T (TSCM) cells possess stem cell properties including multipotency and self-renewal and are being recognized as emerging players in various human diseases. Advanced technologies such as multiparametric flowcytometry and single cell sequencing have enabled their identification and molecular characterization. In case of chronic viral diseases such as human immunodeficiency virus-1, CD4+ TSCM cells, serve as major reservoirs of the latent virus. However, during immune activation and functional exhaustion of effector T cells, these cells also possess the potential to replenish the pool of functional effector cells to curtail the infection. More recently, these cells are speculated to play important role in protective immunity following acute viral infections such as coronavirus disease 2019 and might be amenable for therapeutics by ex vivo expansion. Similarly, studies are also investigating their pathological role in driving autoimmune responses. However, there are several gaps in the understanding of the role of TSCM cells in viral and autoimmune diseases to make them potential therapeutic targets. In this minireview, we have attempted an updated compilation of the dyadic role of these complex TSCM cells during such human diseases along with their biology and transcriptional programs.
Collapse
Affiliation(s)
- Meenakshi Sachdeva
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Shivangi Taneja
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
23
|
Buck AM, Deveau TM, Henrich TJ, Deitchman AN. Challenges in HIV-1 Latent Reservoir and Target Cell Quantification in CAR-T Cell and Other Lentiviral Gene Modifying HIV Cure Strategies. Viruses 2023; 15:1126. [PMID: 37243212 PMCID: PMC10222761 DOI: 10.3390/v15051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy or following analytical treatment interruption (ATI). However, there are technical challenges in the quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and also in the identification of cells expressing target antigens. First, there is a lack of validated techniques to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field, resolving these challenges in CAR-T-cell therapy will be crucial.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
24
|
Dross S, Venkataraman R, Patel S, Huang ML, Bollard CM, Rosati M, Pavlakis GN, Felber BK, Bar KJ, Shaw GM, Jerome KR, Mullins JI, Kiem HP, Fuller DH, Peterson CW. Efficient ex vivo expansion of conserved element vaccine-specific CD8+ T-cells from SHIV-infected, ART-suppressed nonhuman primates. Front Immunol 2023; 14:1188018. [PMID: 37207227 PMCID: PMC10189133 DOI: 10.3389/fimmu.2023.1188018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.
Collapse
Affiliation(s)
- Sandra Dross
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Rasika Venkataraman
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Hans-Peter Kiem
- Washington National Primate Research Center, Seattle, WA, United States
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Christopher W. Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Campos-Gonzalez G, Martinez-Picado J, Velasco-Hernandez T, Salgado M. Opportunities for CAR-T Cell Immunotherapy in HIV Cure. Viruses 2023; 15:v15030789. [PMID: 36992496 PMCID: PMC10057306 DOI: 10.3390/v15030789] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Chimeric antigen receptor (CAR) technology is having a huge impact in the blood malignancy field and is becoming a well-established therapy for many types of leukaemia. In recent decades, efforts have been made to demonstrate that CAR-T cells have potential as a therapy to achieve a sterilizing cure for human immunodeficiency virus (HIV) infection. However, translation of this technology to the HIV scenario has not been easy, as many challenges have appeared along the way that hinder the consolidation of CAR-T cells as a putative therapy. Here, we review the origin and development of CAR-T cells, describe the advantages of CAR-T cell therapy in comparison with other therapies, and describe the major obstacles currently faced regarding application of this technology in the HIV field, specifically, viral escape, CAR-T cell infectivity, and accessibility to hidden reservoirs. Nonetheless, promising results in successfully tackling some of these issues that have been obtained in clinical trials suggest a bright future for CAR-T cells as a consolidated therapy.
Collapse
Affiliation(s)
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Talia Velasco-Hernandez
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- RICORS-TERAV, ISCIII, 28029 Madrid, Spain
| | - Maria Salgado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| |
Collapse
|