1
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2024:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
English EP, Swingler RN, Patwa S, Tosun M, Howard JF, Miljković MD, Jewell CM. Engineering CAR-T therapies for autoimmune disease and beyond. Sci Transl Med 2024; 16:eado2084. [PMID: 39475572 DOI: 10.1126/scitranslmed.ado2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor-T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.
Collapse
Affiliation(s)
| | | | - Simran Patwa
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - Mehmet Tosun
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - James F Howard
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | | |
Collapse
|
3
|
Hiner CR, Mueller AL, Su H, Goldstein H. Interventions during Early Infection: Opening a Window for an HIV Cure? Viruses 2024; 16:1588. [PMID: 39459922 PMCID: PMC11512236 DOI: 10.3390/v16101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although combination antiretroviral therapy (ART) has been a landmark achievement for the treatment of human immunodeficiency virus (HIV), an HIV cure has remained elusive. Elimination of latent HIV reservoirs that persist throughout HIV infection is the most challenging barrier to an HIV cure. The progressive HIV infection is marked by the increasing size and diversity of latent HIV reservoirs until an effective immune response is mobilized, which can control but not eliminate HIV infection. The stalemate between HIV replication and the immune response is manifested by the establishment of a viral set point. ART initiation during the early stage limits HIV reservoir development, preserves immune function, improves the quality of life, and may lead to ART-free viral remission in a few people living with HIV (PLWH). However, for the overwhelming majority of PLWH, early ART initiation alone does not cure HIV, and lifelong ART is needed to sustain viral suppression. A critical area of research is focused on determining whether HIV could be functionally cured if additional treatments are provided alongside early ART. Several HIV interventions including Block and Lock, Shock and Kill, broadly neutralizing antibody (bNAb) therapy, adoptive CD8+ T cell therapy, and gene therapy have demonstrated delayed viral rebound and/or viral remission in animal models and/or some PLWH. Whether or not their application during early infection can improve the success of HIV remission is less studied. Herein, we review the current state of clinical and investigative HIV interventions and discuss their potential to improve the likelihood of post-treatment remission if initiated during early infection.
Collapse
Affiliation(s)
- Christopher R. Hiner
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - April L. Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Rubinstein PG, Galvez C, Ambinder RF. Hematopoietic stem cell transplantation and cellular therapy in persons living with HIV. Curr Opin Infect Dis 2024; 37:254-263. [PMID: 38820072 DOI: 10.1097/qco.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
PURPOSE OF REVIEW Summarize the latest research of both stem cell transplantation and cellular therapy and present the implications with respect to persons with HIV (PWH), hematologic malignancies, and HIV-1 cure. RECENT FINDINGS Allogeneic (alloSCT) and autologous (autoSCT) stem cell transplantation have been shown to be well tolerated and effective regardless of HIV-1 status. AlloSCT leads to a decrease in the HIV-1 latently infected reservoir orders of magnitude below that achieved with antiretroviral therapy (ART) alone. Utilization of CCR5Δ2/Δ32 donors in an alloSCT has resulted in HIV-1 cures. In the last 12 months, three cases of cure have been published, giving further insight into the conditions required for HIV-1 control. Other advances in the treatment of hematological cancers include chimeric antigen receptor T-cell (CART) therapy, which are active in PWH with lymphoma. SUMMARY Here we discuss the advances in SCT and cellular therapy in PWH and cancer. Additionally, we discuss how these technologies are being utilized to achieve HIV-1 cure.
Collapse
Affiliation(s)
- Paul G Rubinstein
- Section of Hematology/Oncology, Department of Medicine, University of Illinois
- Ruth M. Rothstein CORE Center
- Section of Hematology/Oncology, Department of Medicine, Cook County Health and Hospital Systems (Cook County Hospital), Chicago, Illinois
| | - Carlos Galvez
- Section of Hematology/Oncology, Department of Medicine, University of Illinois
| | - Richard F Ambinder
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Su H, Mueller A, Goldstein H. Recent advances on anti-HIV chimeric antigen receptor-T-cell treatment to provide sustained HIV remission. Curr Opin HIV AIDS 2024; 19:169-178. [PMID: 38695148 DOI: 10.1097/coh.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Successful sustained remission of HIV infection has been achieved after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation for treatment of leukemia in a small cohort of people living with HIV (PLWH). This breakthrough demonstrated that the goal of curing HIV was achievable. However, the high morbidity and mortality associated with bone marrow transplantation limits the routine application of this approach and provides a strong rationale for pursuing alternative strategies for sustained long-term antiretroviral therapy (ART)-free HIV remission. Notably, long-term immune-mediated control of HIV replication observed in elite controllers and posttreatment controllers suggests that potent HIV-specific immune responses could provide sustained ART-free remission in PLWH. The capacity of chimeric antigen receptor (CAR)-T cells engineered to target malignant cells to induce remission and cure in cancer patients made this an attractive approach to provide PLWH with a potent HIV-specific immune response. Here, we review the recent advances in the design and application of anti-HIV CAR-T-cell therapy to provide a functional HIV cure. RECENT FINDINGS HIV reservoirs are established days after infection and persist through clonal expansion of infected cells. The continuous interaction between latently infected cells and the immune system shapes the landscape of HIV latency and likely contributes to ART-free viral control in elite controllers. CAR-T cells can exhibit superior antiviral activity as compared with native HIV-specific T cells, particularly because they can be engineered to have multiple HIV specificities, resistance to HIV infection, dual costimulatory signaling, immune checkpoint inhibitors, stem cell derivation, CMV TCR coexpression, and tissue homing ligands. These modifications can significantly improve the capacities of anti-HIV CAR-T cells to prevent viral escape, resist HIV infection, and enhance cytotoxicity, persistence, and tissue penetration. Collectively, these novel modifications of anti-HIV CAR-T cell design have increased their capacity to control HIV infection. SUMMARY Anti-HIV CAR-T cells can be engineered to provide potent and sustained in-vitro and in-vivo antiviral function. The combination of anti-HIV CAR-T cells with other immunotherapeutics may contribute to long-term HIV remission in PLWH.
Collapse
Affiliation(s)
- Hang Su
- Department of Microbiology & Immunology
| | | | - Harris Goldstein
- Department of Microbiology & Immunology
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
7
|
Shu J, Xie W, Chen Z, Offringa R, Hu Y, Mei H. The enchanting canvas of CAR technology: Unveiling its wonders in non-neoplastic diseases. MED 2024; 5:495-529. [PMID: 38608709 DOI: 10.1016/j.medj.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a groundbreaking advancement in personalized immunotherapy and achieved widespread success in hematological malignancies. As CAR technology continues to evolve, numerous studies have unveiled its potential far beyond the realm of oncology. This review focuses on the current applications of CAR-based cellular platforms in non-neoplastic indications, such as autoimmune, infectious, fibrotic, and cellular senescence-associated diseases. Furthermore, we delve into the utilization of CARs in non-T cell populations such as natural killer (NK) cells and macrophages, highlighting their therapeutic potential in non-neoplastic conditions and offering the potential for targeted, personalized therapies to improve patient outcomes and enhanced quality of life.
Collapse
Affiliation(s)
- Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
8
|
Mastrangelo A, Gama L, Cinque P. Strategies to target the central nervous system HIV reservoir. Curr Opin HIV AIDS 2024; 19:133-140. [PMID: 38457227 DOI: 10.1097/coh.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF THE REVIEW The central nervous system (CNS) is an hotspot for HIV persistence and may be a major obstacle to overcome for curative strategies. The peculiar anatomical, tissular and cellular characteristics of the HIV reservoir in the CNS may need to be specifically addressed to achieve a long-term HIV control without ART. In this review, we will discuss the critical challenges that currently explored curative strategies may face in crossing the blood-brain barrier (BBB), targeting latent HIV in brain-resident myeloid reservoirs, and eliminating the virus without eliciting dangerous neurological adverse events. RECENT FINDINGS Latency reversing agents (LRA), broadly neutralizing monoclonal antibodies (bNabs), chimeric antigen receptor (CAR) T-cells, and adeno-associated virus 9-vectored gene-therapies cross the BBB with varying efficiency. Although brain penetration is poor for bNAbs, viral vectors for in vivo gene-editing, certain LRAs, and CAR T-cells may reach the cerebral compartment more efficiently. All these approaches, however, may encounter difficulties in eliminating HIV-infected perivascular macrophages and microglia. Safety, including local neurological adverse effects, may also be a concern, especially if high doses are required to achieve optimal brain penetration and efficient brain cell targeting. SUMMARY Targeting the CNS remains a potential problem for the currently investigated HIV curing strategies. In vivo evidence on CNS effectiveness is limited for most of the investigated strategies, and additional studies should be focused on evaluating the interplay between the cerebral HIV reservoir and treatment aiming to achieve an ART-free cure.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Department of Allergy and Clinical Immunology, Centre Hopitalier Universitaire Vaudoise (CHUV), Lausanne, Switzerland
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Paola Cinque
- Unit of Infectious Diseases and Neurovirology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
9
|
Carrillo MA, Zhen A, Mu W, Rezek V, Martin H, Peterson CW, Kiem HP, Kitchen SG. Stem cell-derived CAR T cells show greater persistence, trafficking, and viral control compared to ex vivo transduced CAR T cells. Mol Ther 2024; 32:1000-1015. [PMID: 38414243 PMCID: PMC11163220 DOI: 10.1016/j.ymthe.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.
Collapse
Affiliation(s)
- Mayra A Carrillo
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wenli Mu
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather Martin
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Li K, Zhang Q. Eliminating the HIV tissue reservoir: current strategies and challenges. Infect Dis (Lond) 2024; 56:165-182. [PMID: 38149977 DOI: 10.1080/23744235.2023.2298450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) is still one of the most widespread and harmful infectious diseases in the world. The presence of reservoirs housing the human immunodeficiency virus (HIV) represents a significant impediment to the development of clinically applicable treatments on a large scale. The viral load in the blood can be effectively reduced to undetectable levels through antiretroviral therapy (ART), and a higher concentration of HIV is sequestered in various tissues throughout the body, forming the tissue reservoir - the source of viremia after interruption treatment. METHODS We take the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a guideline for this review. In June 2023, we used the Pubmed, Embase, and Scopus databases to search the relevant literature published in the last decade. RESULTS Here we review the current strategies and treatments for eliminating the HIV tissue reservoirs: early and intensive therapy, gene therapy (including ribozyme, RNA interference, RNA aptamer, zinc finger enzyme, transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/associated nuclease 9 (CRISPR/Cas9)), 'Shock and Kill', 'Block and lock', immunotherapy (including therapeutic vaccines, broadly neutralising antibodies (bNAbs), chimeric antigen receptor T-cell immunotherapy (CAR-T)), and haematopoietic stem cell transplantation (HSCT). CONCLUSION The existence of an HIV reservoir is the main obstacle to the complete cure of AIDS. Choosing the appropriate strategy to deplete the HIV reservoir and achieve a functional cure for AIDS is the focus and difficulty of current research. So far, there has been a lot of research and progress in reducing the HIV reservoir, but in general, the current research is still very preliminary. Much research is still needed to properly assess the reliability, effectiveness, and necessity of these strategies.
Collapse
Affiliation(s)
- Kangpeng Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Grasberger P, Sondrini AR, Clayton KL. Harnessing immune cells to eliminate HIV reservoirs. Curr Opin HIV AIDS 2024; 19:62-68. [PMID: 38167784 PMCID: PMC10908255 DOI: 10.1097/coh.0000000000000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Despite decades of insights about how CD8 + T cells and natural killer (NK) cells contribute to natural control of infection, additional hurdles (mutational escape from cellular immunity, sequence diversity, and hard-to-access tissue reservoirs) will need to be overcome to develop a cure. In this review, we highlight recent findings of novel mechanisms of antiviral cellular immunity and discuss current strategies for therapeutic deisgn. RECENT FINDINGS Of note are the apparent converging roles of viral antigen-specific MHC-E-restricted CD8 + T cells and NK cells, interleukin (IL)-15 biologics to boost cytotoxicity, and broadly neutralizing antibodies in their native form or as anitbody fragments to neutralize virus and engage cellular immunity, respectively. Finally, renewed interest in myeloid cells as relevant viral reservoirs is an encouraging sign for designing inclusive therapeutic strategies. SUMMARY Several studies have shown promise in many preclinical models of disease, including simian immunodeficiency virus (SIV)/SHIV infection in nonhuman primates and HIV infection in humanized mice. However, each model comes with its own limitations and may not fully predict human responses. We eagerly await the results of clinical trails assessing the efficacy of these strategies to achieve reductions in viral reservoirs, delay viral rebound, or ultimately elicit immune based control of infection without combination antiretroviral therapy (cART).
Collapse
Affiliation(s)
- Paula Grasberger
- Department of Pathology, University of Massachusetts Chan Medical School
| | | | - Kiera L. Clayton
- Department of Pathology, University of Massachusetts Chan Medical School
| |
Collapse
|
12
|
Su H, Anthony-Gonda K, Orentas RJ, Dropulić B, Goldstein H. Generation of Anti-HIV CAR-T Cells for Preclinical Research. Methods Mol Biol 2024; 2807:287-298. [PMID: 38743236 DOI: 10.1007/978-1-0716-3862-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- HIV Infections/immunology
- HIV Infections/therapy
- HIV Infections/virology
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- CD8-Positive T-Lymphocytes/immunology
- HIV-1/immunology
- T-Lymphocytes/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- Hang Su
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | - Harris Goldstein
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Matsui Y, Miura Y. Advancements in Cell-Based Therapies for HIV Cure. Cells 2023; 13:64. [PMID: 38201268 PMCID: PMC10778010 DOI: 10.3390/cells13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The treatment of human immunodeficiency virus (HIV-1) has evolved since the establishment of combination antiretroviral therapy (ART) in the 1990s, providing HIV-infected individuals with approaches that suppress viral replication, prevent acquired immunodeficiency syndrome (AIDS) throughout their lifetime with continuous therapy, and halt HIV transmission. However, despite the success of these regimens, the global HIV epidemic persists, prompting a comprehensive exploration of potential strategies for an HIV cure. Here, we offer a consolidated overview of cell-based therapies for HIV-1, focusing on CAR-T cell approaches, gene editing, and immune modulation. Persistent challenges, including CAR-T cell susceptibility to HIV infection, stability, and viral reservoir control, underscore the need for continued research. This review synthesizes current knowledge, highlighting the potential of cellular therapies to address persistent challenges in the pursuit of an HIV cure.
Collapse
Affiliation(s)
- Yusuke Matsui
- Gladstone Institute of Virology, Gladstone Institutes, 1650 Owens St., San Francisco, CA 941578, USA
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
14
|
Li S, Wang H, Guo N, Su B, Lambotte O, Zhang T. Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chin Med J (Engl) 2023; 136:2658-2667. [PMID: 37927030 PMCID: PMC10684145 DOI: 10.1097/cm9.0000000000002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/07/2023] Open
Abstract
ABSTRACT Although antiretroviral therapy (ART) can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus (HIV)-infected individuals, ART alone cannot completely eliminate HIV due to its integration into the host cell genome to form viral reservoirs. To achieve a functional cure for HIV infection, numerous preclinical and clinical studies are underway to develop innovative immunotherapies to eliminate HIV reservoirs in the absence of ART. Early studies have tested adoptive T-cell therapies in HIV-infected individuals, but their effectiveness was limited. In recent years, with the technological progress and great success of chimeric antigen receptor (CAR) therapy in the treatment of hematological malignancies, CAR therapy has gradually shown its advantages in the field of HIV infection. Many studies have identified a variety of HIV-specific CAR structures and types of cytolytic effector cells. Therefore, CAR therapy may be beneficial for enhancing HIV immunity, achieving HIV control, and eliminating HIV reservoirs, gradually becoming a promising strategy for achieving a functional HIV cure. In this review, we provide an overview of the design of anti-HIV CAR proteins, the cell types of anti-HIV CAR (including CAR T cells, CAR natural killer cells, and CAR-encoding hematopoietic stem/progenitor cells), the clinical application of CAR therapy in HIV infection, and the prospects and challenges in anti-HIV CAR therapy for maintaining viral suppression and eliminating HIV reservoirs.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Olivier Lambotte
- Department of Internal Medicine, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, University Paris Saclay, Paris 94270, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
15
|
Wang JY, Wang L. CAR-T cell therapy: Where are we now, and where are we heading? BLOOD SCIENCE 2023; 5:237-248. [PMID: 37941917 PMCID: PMC10629745 DOI: 10.1097/bs9.0000000000000173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapies have exhibited remarkable efficacy in the treatment of hematologic malignancies, with 9 CAR-T-cell products currently available. Furthermore, CAR-T cells have shown promising potential for expanding their therapeutic applications to diverse areas, including solid tumors, myocardial fibrosis, and autoimmune and infectious diseases. Despite these advancements, significant challenges pertaining to treatment-related toxic reactions and relapses persist. Consequently, current research efforts are focused on addressing these issues to enhance the safety and efficacy of CAR-T cells and reduce the relapse rate. This article provides a comprehensive overview of the present state of CAR-T-cell therapies, including their achievements, existing challenges, and potential future developments.
Collapse
Affiliation(s)
- Jia-Yi Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
16
|
Sachdeva M, Taneja S, Sachdeva N. Stem cell-like memory T cells: Role in viral infections and autoimmunity. World J Immunol 2023; 13:11-22. [DOI: 10.5411/wji.v13.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
Stem cell-like memory T (TSCM) cells possess stem cell properties including multipotency and self-renewal and are being recognized as emerging players in various human diseases. Advanced technologies such as multiparametric flowcytometry and single cell sequencing have enabled their identification and molecular characterization. In case of chronic viral diseases such as human immunodeficiency virus-1, CD4+ TSCM cells, serve as major reservoirs of the latent virus. However, during immune activation and functional exhaustion of effector T cells, these cells also possess the potential to replenish the pool of functional effector cells to curtail the infection. More recently, these cells are speculated to play important role in protective immunity following acute viral infections such as coronavirus disease 2019 and might be amenable for therapeutics by ex vivo expansion. Similarly, studies are also investigating their pathological role in driving autoimmune responses. However, there are several gaps in the understanding of the role of TSCM cells in viral and autoimmune diseases to make them potential therapeutic targets. In this minireview, we have attempted an updated compilation of the dyadic role of these complex TSCM cells during such human diseases along with their biology and transcriptional programs.
Collapse
Affiliation(s)
- Meenakshi Sachdeva
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Shivangi Taneja
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
17
|
Buck AM, Deveau TM, Henrich TJ, Deitchman AN. Challenges in HIV-1 Latent Reservoir and Target Cell Quantification in CAR-T Cell and Other Lentiviral Gene Modifying HIV Cure Strategies. Viruses 2023; 15:1126. [PMID: 37243212 PMCID: PMC10222761 DOI: 10.3390/v15051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy or following analytical treatment interruption (ATI). However, there are technical challenges in the quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and also in the identification of cells expressing target antigens. First, there is a lack of validated techniques to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field, resolving these challenges in CAR-T-cell therapy will be crucial.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
18
|
Dross S, Venkataraman R, Patel S, Huang ML, Bollard CM, Rosati M, Pavlakis GN, Felber BK, Bar KJ, Shaw GM, Jerome KR, Mullins JI, Kiem HP, Fuller DH, Peterson CW. Efficient ex vivo expansion of conserved element vaccine-specific CD8+ T-cells from SHIV-infected, ART-suppressed nonhuman primates. Front Immunol 2023; 14:1188018. [PMID: 37207227 PMCID: PMC10189133 DOI: 10.3389/fimmu.2023.1188018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.
Collapse
Affiliation(s)
- Sandra Dross
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Rasika Venkataraman
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Hans-Peter Kiem
- Washington National Primate Research Center, Seattle, WA, United States
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Christopher W. Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Campos-Gonzalez G, Martinez-Picado J, Velasco-Hernandez T, Salgado M. Opportunities for CAR-T Cell Immunotherapy in HIV Cure. Viruses 2023; 15:v15030789. [PMID: 36992496 PMCID: PMC10057306 DOI: 10.3390/v15030789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Chimeric antigen receptor (CAR) technology is having a huge impact in the blood malignancy field and is becoming a well-established therapy for many types of leukaemia. In recent decades, efforts have been made to demonstrate that CAR-T cells have potential as a therapy to achieve a sterilizing cure for human immunodeficiency virus (HIV) infection. However, translation of this technology to the HIV scenario has not been easy, as many challenges have appeared along the way that hinder the consolidation of CAR-T cells as a putative therapy. Here, we review the origin and development of CAR-T cells, describe the advantages of CAR-T cell therapy in comparison with other therapies, and describe the major obstacles currently faced regarding application of this technology in the HIV field, specifically, viral escape, CAR-T cell infectivity, and accessibility to hidden reservoirs. Nonetheless, promising results in successfully tackling some of these issues that have been obtained in clinical trials suggest a bright future for CAR-T cells as a consolidated therapy.
Collapse
Affiliation(s)
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Talia Velasco-Hernandez
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- RICORS-TERAV, ISCIII, 28029 Madrid, Spain
| | - Maria Salgado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| |
Collapse
|