1
|
Ramírez-Sánchez E, Mondragón-García A, Garduño J, Hernández-Vázquez F, Ortega-Tinoco S, Hernández-López S. Opposing effects of nicotine on hypothalamic arcuate nucleus POMC and NPY neurons. Prog Neurobiol 2024; 242:102682. [PMID: 39490889 DOI: 10.1016/j.pneurobio.2024.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The hypothalamic arcuate nucleus (ARC) contains two main populations of neurons essential for energy homeostasis: neuropeptide Y (NPY) neurons, which are orexigenic and stimulate food intake, and proopiomelanocortin (POMC) neurons, which have an anorexigenic effect. Located near the blood-brain barrier, ARC neurons sense blood-borne signals such as leptin, insulin, and glucose. Exogenous substances, such as nicotine, can also alter ARC neuron activity and energy balance. Nicotine, an addictive drug used worldwide, inhibits appetite, and reduces body weight, although its mechanisms in regulating ARC neurons are not well understood. Using electrophysiological techniques in brain slices, we investigated the effects of nicotine on POMC and NPY neurons at physiological glucose concentrations. We found that nicotine increased the firing rate of POMC and inhibited NPY neurons. Additionally, nicotine-enhanced glutamatergic inputs to POMC cells and GABAergic inputs to NPY neurons, mediated by α7 and α4β2 nicotinic acetylcholine receptors (nAChRs), respectively. These findings can contribute to the understanding of the anorexigenic effects of nicotine in smokers.
Collapse
Affiliation(s)
- E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - F Hernández-Vázquez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - S Ortega-Tinoco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
3
|
Zhou S, Chen W, Yang H. Dopamine. Trends Endocrinol Metab 2024:S1043-2760(24)00186-3. [PMID: 39138070 DOI: 10.1016/j.tem.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Siyao Zhou
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Liangzhu Laboratory, The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China
| | - Wenqiang Chen
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark.
| | - Hongbin Yang
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Liangzhu Laboratory, The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
4
|
Lavoie O, Turmel A, Mattoon P, Desrosiers WJ, Plamondon J, Michael NJ, Caron A. Hypothalamic GABAergic Neurons Expressing Cellular Retinoic Acid Binding Protein 1 (CRABP1) Are Sensitive to Metabolic Status and Liraglutide in Male Mice. Neuroendocrinology 2024; 114:681-697. [PMID: 38631315 PMCID: PMC11232952 DOI: 10.1159/000538716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Owing to their privileged anatomical location, neurons of the arcuate nucleus of the hypothalamus (ARC) play critical roles in sensing and responding to metabolic signals such as leptin and glucagon-like peptide 1 (GLP-1). In addition to the well-known proopiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons, subpopulations of GABAergic neurons are emerging as key regulators of energy balance. However, the precise identity of these metabolic neurons is still elusive. Here, we identified and characterized the molecular signature of a novel population of GABAergic neurons of the ARC expressing Cellular retinoic acid binding protein 1 (Crabp1). METHODS Using a combination of immunohistochemistry and in situ hybridization techniques, we investigated the expression of Crabp1 across the mouse brain and characterized the molecular identity of Crabp1ARC neurons. We also determined whether Crabp1ARC neurons are sensitive to fasting, leptin, and GLP1R agonism by assessing cFOS immunoreactivity as a marker of neuronal activity. RESULTS Crabp1ARC neurons represent a novel GABAergic neuronal population robustly enriched in the ARC and are distinct from the prototypical melanocortin neurons. Crabp1ARC neurons overlap with three subpopulations of yet uncharacterized ARC neurons expressing Htr3b, Tbx19, and Tmem215. Notably, Crabp1ARC neurons express receptors for metabolic hormones and their activity is modulated by the nutritional state and GLP1R agonism. CONCLUSION Crabp1ARC neurons represent a novel heterogeneous population of GABAergic neurons sensitive to metabolic status.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Audrey Turmel
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Paige Mattoon
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | | | | | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
5
|
De Solis AJ, Del Río-Martín A, Radermacher J, Chen W, Steuernagel L, Bauder CA, Eggersmann FR, Morgan DA, Cremer AL, Sué M, Germer M, Kukat C, Vollmar S, Backes H, Rahmouni K, Kloppenburg P, Brüning JC. Reciprocal activity of AgRP and POMC neurons governs coordinated control of feeding and metabolism. Nat Metab 2024; 6:473-493. [PMID: 38378998 DOI: 10.1038/s42255-024-00987-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Agouti-related peptide (AgRP)-expressing and proopiomelanocortin (POMC)-expressing neurons reciprocally regulate food intake. Here, we combine non-interacting recombinases to simultaneously express functionally opposing chemogenetic receptors in AgRP and POMC neurons for comparing metabolic responses in male and female mice with simultaneous activation of AgRP and inhibition of POMC neurons with isolated activation of AgRP neurons or isolated inhibition of POMC neurons. We show that food intake is regulated by the additive effect of AgRP neuron activation and POMC neuron inhibition, while systemic insulin sensitivity and gluconeogenesis are differentially modulated by isolated-versus-simultaneous regulation of AgRP and POMC neurons. We identify a neurocircuit engaging Npy1R-expressing neurons in the paraventricular nucleus of the hypothalamus, where activated AgRP neurons and inhibited POMC neurons cooperate to promote food consumption and activate Th+ neurons in the nucleus tractus solitarii. Collectively, these results unveil how food intake is precisely regulated by the simultaneous bidirectional interplay between AgRP and POMC neurocircuits.
Collapse
Affiliation(s)
- Alain J De Solis
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Almudena Del Río-Martín
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Jan Radermacher
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Weiyi Chen
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Corinna A Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Fynn R Eggersmann
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Anna-Lena Cremer
- Multimodal Imaging of Brain Metabolism Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Michael Sué
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Maximilian Germer
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stefan Vollmar
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Heiko Backes
- Multimodal Imaging of Brain Metabolism Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
6
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|