1
|
David AF, Heinzel A, Kammer M, Aschauer C, Reindl-Schwaighofer R, Hu K, Chen HS, Muckenhuber M, Kubetz A, Weijler AM, Worel N, Edinger M, Berlakovich G, Lion T, Sykes M, Wekerle T, Oberbauer R. Combination cell therapy leads to clonal deletion of donor-specific T cells in kidney transplant recipients. EBioMedicine 2024; 106:105239. [PMID: 38996766 PMCID: PMC11284950 DOI: 10.1016/j.ebiom.2024.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Induction of donor-specific tolerance is a promising approach to achieve long-term graft patency in transplantation with little to no maintenance immunosuppression. Changes to the recipient's T cell receptor (TCR) repertoire are understood to play a pivotal role in the establishment of a robust state of tolerance in chimerism-based transplantation protocols. METHODS We investigated changes to the TCR repertoires of patients participating in an ongoing prospective, controlled, phase I/IIa trial designed to evaluate the safety and efficacy of combination cell therapy in living donor kidney transplantation. Using high-throughput sequencing, we characterized the repertoires of six kidney recipients who also received bone marrow from the same donor (CKBMT), together with an infusion of polyclonal autologous Treg cells instead of myelosuppression. FINDINGS Patients undergoing combination cell therapy exhibited partial clonal deletion of donor-reactive CD4+ T cells at one, three, and six months post-transplant, compared to control patients receiving the same immunosuppression regimen but no cell therapy (p = 0.024). The clonality, R20 and turnover rates of the CD4+ and CD8+ TCR repertoires were comparable in both groups, showing our protocol caused no excessive repertoire shift or loss of diversity. Treg clonality was lower in the case group than in control (p = 0.033), suggesting combination cell therapy helps to preserve Treg diversity. INTERPRETATION Overall, our data indicate that combining Treg cell therapy with CKBMT dampens the alloimmune response to transplanted kidneys in humans in the absence of myelosuppression. FUNDING This study was funded by the Vienna Science and Technology Fund (WWTF).
Collapse
Affiliation(s)
- Ana F David
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Kammer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Center for Medical Data Science, Institute for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
| | - Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karin Hu
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hao-Shan Chen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- University Hospital Regensburg, Department of Internal Medicine III & Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Lion
- St. Anna Children's Cancer, Research Institute and Labdia Labordiagnostik, Vienna, Austria
| | - Megan Sykes
- Columbian Center for Translational Immunology, Department of Medicine, Columbia University, New York City, NY, United States
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Muckenhuber M, Mengrelis K, Weijler AM, Steiner R, Kainz V, Buresch M, Regele H, Derdak S, Kubetz A, Wekerle T. IL-6 inhibition prevents costimulation blockade-resistant allograft rejection in T cell-depleted recipients by promoting intragraft immune regulation in mice. Nat Commun 2024; 15:4309. [PMID: 38830846 PMCID: PMC11148062 DOI: 10.1038/s41467-024-48574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The efficacy of costimulation blockade with CTLA4-Ig (belatacept) in transplantation is limited due to T cell-mediated rejection, which also persists after induction with anti-thymocyte globulin (ATG). Here, we investigate why ATG fails to prevent costimulation blockade-resistant rejection and how this barrier can be overcome. ATG did not prevent graft rejection in a murine heart transplant model of CTLA4-Ig therapy and induced a pro-inflammatory cytokine environment. While ATG improved the balance between regulatory T cells (Treg) and effector T cells in the spleen, it had no such effect within cardiac allografts. Neutralizing IL-6 alleviated graft inflammation, increased intragraft Treg frequencies, and enhanced intragraft IL-10 and Th2-cytokine expression. IL-6 blockade together with ATG allowed CTLA4-Ig therapy to achieve long-term, rejection-free heart allograft survival. This beneficial effect was abolished upon Treg depletion. Combining ATG with IL-6 blockade prevents costimulation blockade-resistant rejection, thereby eliminating a major impediment to clinical use of costimulation blockers in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marlena Buresch
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Anna Kubetz
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Div. of Transplantation, Dept. of General Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
4
|
Mengrelis K, Muckenhuber M, Wekerle T. Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation 2023; 107:2473-2485. [PMID: 37046378 DOI: 10.1097/tp.0000000000004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hematopoietic chimerism remains the most promising strategy to bring transplantation tolerance into clinical routine. The concept of chimerism-based tolerance aims to extend the recipient's mechanisms of self-tolerance (ie, clonal deletion, anergy, and regulation) to include the tolerization of donor antigens that are introduced through the cotransplantation of donor hematopoietic cells. For this to be successful, donor hematopoietic cells need to engraft in the recipient at least temporarily. Three pioneering clinical trials inducing chimerism-based tolerance in kidney transplantation have been published to date. Within this review, we discuss the mechanisms of tolerance that are associated with the specific therapeutic protocols of each trial. Recent data highlight the importance of regulation as a mechanism that maintains tolerance. Insufficient regulatory mechanisms are also a likely explanation for situations of tolerance failure despite persisting donor chimerism. After decades of preclinical development of chimerism protocols, mechanistic data from clinical trials have recently become increasingly important. Better understanding of the required mechanisms for tolerance to be induced in humans will be a key to design more reliable and less invasive chimerism protocols in the future.
Collapse
Affiliation(s)
- Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
5
|
Anggelia MR, Cheng HY, Chuang WY, Hsieh YH, Wang AYL, Lin CH, Wei FC, Brandacher G, Lin CH. Unraveling the Crucial Roles of FoxP3+ Regulatory T Cells in Vascularized Composite Allograft Tolerance Induction and Maintenance. Transplantation 2021; 105:1238-1249. [PMID: 33141809 DOI: 10.1097/tp.0000000000003509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The role of regulatory T cells (Treg) in tolerance induction of vascularized composite allotransplantation (VCA) remains unclear. This study was designed to examine characteristics of Treg after VCA and their capacity to rescue allografts from rejection. METHODS Osteomyocutaneous allografts were transplanted from Balb/c to C57BL/6 mice. All mice received costimulatory blockade and a short course of rapamycin. To elucidate the role of Treg for tolerance induction, Treg depletion was performed at postoperative day (POD) 0, 30, or 90. To assess capacity of Treg to rescue allografts from rejection, an injection of 2 × 106 Treg isolated from tolerant mice was applied. RESULTS Eighty percent of VCA recipient mice using costimulatory blockade and rapamycin regimen developed tolerance. The tolerant recipients had a higher ratio of circulating Treg to effector T cells and elevated interleukin-10 at POD 30. A significantly higher rejection rate was observed when Treg were depleted at POD 30. But Treg depletion at POD 90 had no effect on tolerance. Treg from tolerant recipients showed stronger suppressive potential and the ability to rescue allografts from rejection. Furthermore, transplanted Treg-containing skin grafts from tolerant mice delayed rejection elicited by adoptively transferred effector T cells to Rag2-/- mice. CONCLUSIONS Circulating Treg are crucial for inducing VCA tolerance in the early posttransplant phase, and allograft-residing Treg may maintain tolerance. Treg may, therefore, serve as a potential cellular therapeutic to improve VCA outcomes.
Collapse
Affiliation(s)
- Madonna Rica Anggelia
- Department of Plastic and Reconstructive Surgery, Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Gueishan, Taiwan
| | - Hui-Yun Cheng
- Department of Plastic and Reconstructive Surgery, Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Gueishan, Taiwan
| | - Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Gueishan, Taiwan
| | - Yun-Huan Hsieh
- Department of Plastic and Reconstructive Surgery, Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Gueishan, Taiwan
| | - Aline Yen Ling Wang
- Department of Plastic and Reconstructive Surgery, Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Gueishan, Taiwan
| | - Chih-Hung Lin
- Department of Plastic and Reconstructive Surgery, Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Gueishan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chiayi Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Fu-Chan Wei
- Department of Plastic and Reconstructive Surgery, Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Gueishan, Taiwan
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cheng-Hung Lin
- Department of Plastic and Reconstructive Surgery, Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Gueishan, Taiwan
| |
Collapse
|
6
|
Hirai T, Ramos TL, Lin PY, Simonetta F, Su LL, Picton LK, Baker J, Lin JX, Li P, Seo K, Lohmeyer JK, Bolivar-Wagers S, Mavers M, Leonard WJ, Blazar BR, Garcia KC, Negrin RS. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J Clin Invest 2021; 131:139991. [PMID: 33855972 DOI: 10.1172/jci139991] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of Tregs has been shown to improve alloengraftment in animal models. However, it is technically challenging to expand Tregs ex vivo for the purpose of infusing large numbers of cells in the clinic. We demonstrate an innovative approach to engineering an orthogonal IL-2/IL-2 receptor (IL-2R) pair, the parts of which selectively interact with each other, transmitting native IL-2 signals, but do not interact with the natural IL-2 or IL-2R counterparts, thereby enabling selective stimulation of target cells in vivo. Here, we introduced this orthogonal IL-2R into Tregs. Upon adoptive transfer in a murine mixed hematopoietic chimerism model, orthogonal IL-2 injection significantly promoted orthogonal IL-2R+Foxp3GFP+CD4+ cell proliferation without increasing other T cell subsets and facilitated donor hematopoietic cell engraftment followed by acceptance of heart allografts. Our data indicate that selective target cell stimulation enabled by the engineered orthogonal cytokine receptor improves Treg potential for the induction of organ transplantation tolerance.
Collapse
Affiliation(s)
- Toshihito Hirai
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA.,Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Teresa L Ramos
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Mavers
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA.,Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford University, Stanford, California, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Sánchez-Fueyo A, Dazzi F. On minor histocompatibility antigens, mixed chimerism, and transplantation tolerance. Am J Transplant 2021; 21:919-920. [PMID: 32810379 DOI: 10.1111/ajt.16276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Alberto Sánchez-Fueyo
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, King's College London University, London, UK
| | - Francesco Dazzi
- Division of Cancer Studies, King's College London University, London, UK
| |
Collapse
|
8
|
Mahr B, Pilat N, Granofszky N, Muckenhuber M, Unger LW, Weijler AM, Wiletel M, Steiner R, Dorner L, Regele H, Wekerle T. Distinct roles for major and minor antigen barriers in chimerism-based tolerance under irradiation-free conditions. Am J Transplant 2021; 21:968-977. [PMID: 32633070 PMCID: PMC7984377 DOI: 10.1111/ajt.16177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 01/25/2023]
Abstract
Eliminating cytoreductive conditioning from chimerism-based tolerance protocols would facilitate clinical translation. Here we investigated the impact of major histocompatibility complex (MHC) and minor histocompatibility antigen (MiHA) barriers on mechanisms of tolerance and rejection in this setting. Transient depletion of natural killer (NK) cells at the time of bone marrow (BM) transplantation (BMT) (20 × 106 BALB/c BM cells → C57BL/6 recipients under costimulation blockade [CB] and rapamycin) prevented BM rejection. Despite persistent levels of mixed chimerism, BMT recipients gradually rejected skin grafts from the same donor strain. Extending NK cell depletion did not improve skin graft survival. However, F1 (C57BL/6×BALB/c) donors, which do not elicit NK cell-mediated rejection, induced durable chimerism and tolerance. In contrast, if F1 donors with BALB/c background only were used (BALB/c×BALB.B), no tolerance was observed. In the absence of MiHA disparities (B10.D2 donors, MHC-mismatch only), temporal NK cell depletion established stable chimerism and tolerance. Conversely, MHC identical BM (BALB.B donors, MiHA mismatch only) readily engrafted without NK cell depletion but no skin graft tolerance ensued. Therefore, we conclude that under CB and rapamycin, MHC disparities provoke NK cell-mediated BM rejection in nonirradiated recipients whereas MiHA disparities do not prevent BM engraftment but impede skin graft tolerance in established mixed chimeras.
Collapse
Affiliation(s)
- Benedikt Mahr
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Nina Pilat
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Nicolas Granofszky
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Moritz Muckenhuber
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Lukas W. Unger
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Anna M. Weijler
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Mario Wiletel
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Romy Steiner
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Lisa Dorner
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Heinz Regele
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
9
|
Pilat N, Sprent J. Treg Therapies Revisited: Tolerance Beyond Deletion. Front Immunol 2021; 11:622810. [PMID: 33633742 PMCID: PMC7902070 DOI: 10.3389/fimmu.2020.622810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 02/02/2023] Open
Abstract
Induction of immune tolerance is the Holy Grail in transplantation medicine and autoimmunity. Currently, patients are required to use immunosuppressive drugs for the rest of their lives, resulting in unwanted side effects and complication from global suppression of the immune response. It is well established that regulatory T cells (Tregs) are critical for the maintenance of immune tolerance towards self-antigens by several mechanisms of immune regulation, in parallel with intrathymic deletion of self-reactive T cells during ontogeny. Therefore, approaches for increasing Treg numbers or function in vivo could provide an all-purpose solution for tolerance induction. Currently, most state-of-the-art therapeutics for treating autoimmune diseases or preventing allograft rejection work either by general immunosuppression or blocking inflammatory reactions and are non-specific. Hence, these approaches cannot provide satisfactory long-term results, let alone a cure. However, in animal models the therapeutic potential of Treg expansion for inducing effective tolerance has now been demonstrated in various models of autoimmunity and allogeneic transplantation. Here, we focus on therapies for increasing the size of the Treg pool by expanding endogenous Treg numbers in vivo or by adoptive transfer of Tregs. In particular, we discuss IL-2 based approaches (low dose IL-2, IL-2 complexes) for inducing Treg expansion in vivo as well as cell-based approaches (polyclonal, antigen specific, or cell engineered) for adoptive Treg therapy. We also mention new questions arising from the first clinical studies on Treg therapy in the fields of transplantation and autoimmunity.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia,*Correspondence: Jonathan Sprent,
| |
Collapse
|
10
|
Oberbauer R, Edinger M, Berlakovich G, Kalhs P, Worel N, Heinze G, Wolzt M, Lion T, Wekerle T. A Prospective Controlled Trial to Evaluate Safety and Efficacy of in vitro Expanded Recipient Regulatory T Cell Therapy and Tocilizumab Together With Donor Bone Marrow Infusion in HLA-Mismatched Living Donor Kidney Transplant Recipients (Trex001). Front Med (Lausanne) 2021; 7:634260. [PMID: 33585521 PMCID: PMC7873436 DOI: 10.3389/fmed.2020.634260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Background: The induction of donor-specific immunological tolerance could improve outcome after kidney transplantation. However, no tolerance protocol is available for routine clinical use. Chimerism-based regimens hold promise, but their widespread application is impeded in part by unresolved safety issues. This study tests the hypothesis that therapy with polyclonal recipient regulatory T cells (Tregs) and anti-IL6R (tocilizumab) leads to transient chimerism and achieves pro-tolerogenic immunomodulation in kidney transplant recipients also receiving donor bone marrow (BM) without myelosuppressive conditioning of the recipient. Methods/design: A prospective, open-label, controlled, single-center, phase I/IIa academic study is performed in HLA-mismatched living donor kidney transplant recipients. Study group: Recipients of the study group receive in vitro expanded recipient Tregs and a donor bone marrow cell infusion within 3 days after transplantation and tocilizumab for the first 3 weeks post-transplant. In addition they are treated with thymoglobulin, belatacept, sirolimus, and steroids as immunosuppression. Starting 6 months post-transplant, sirolimus and steroids are withdrawn in a step-wise manner in stable patients. Control group: Recipients of the control group are treated with thymoglobulin, belatacept, sirolimus, and steroids as immunosuppression. Co-primary endpoints of safety (impaired graft function [eGFR <35 mL/min/1.73 m2], graft-vs.-host disease or patient death by 12 months) and efficacy (total leukocyte donor chimerism within 28 days post-transplant) are assessed. Secondary endpoints include frequency of biopsy-proven acute rejection episodes and subclinical rejection episodes on surveillance biopsies, assessment of kidney graft function, and the evaluation whether the study protocol leads to detectable changes in the immune system indicative of pro-tolerogenic immune modulation. Discussion: The results of this trial will provide evidence whether treatment with recipient Tregs and donor BM is feasible, safe and efficacious in leading to transient chimerism. If successful, this combination cell therapy has the potential to become a novel treatment option for immunomodulation in organ transplantation without the toxicities associated with myelosuppressive recipient conditioning. Trial registration: European Clinical Trials Database EudraCT Nr 2018-003142-16 and clinicaltrials.gov NCT03867617.
Collapse
Affiliation(s)
- Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Edinger
- University Hospital Regensburg, Department of Internal Medicine III & Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Gabriela Berlakovich
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Kalhs
- Bone Marrow Transplant Unit, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nina Worel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Heinze
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Michael Wolzt
- Clinical Trials Coordination Centre, Medical University of Vienna, Vienna, Austria
| | - Thomas Lion
- St. Anna Children's Cancer Research Institute, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, Vienna, Austria.,Labdia Labordiagnostik GmbH, Vienna, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
CTLA4Ig Improves Murine iTreg Induction via TGF β and Suppressor Function In Vitro. J Immunol Res 2018; 2018:2484825. [PMID: 30057914 PMCID: PMC6051081 DOI: 10.1155/2018/2484825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Blockade of the CD28:CD80/86 costimulatory pathway has been shown to be potent in blocking T cell activation in vitro and in vivo. The costimulation blocker CTLA4Ig has been approved for the treatment of autoimmune diseases and transplant rejection. The therapeutic application of regulatory T cells (Tregs) has recently gained much attention for its potential of improving allograft survival. However, neither costimulation blockade with CTLA4Ig nor Treg therapy induces robust tolerance on its own. Combining CTLA4Ig with Treg therapy would be an attractive approach for minimizing immunosuppression or for possibly achieving tolerance. However, since the CD28 pathway is more complex than initially thought, the question arose whether blocking CD80/86 would inadvertently impact immunological tolerance by interfering with Treg generation and function. We therefore wanted to investigate the compatibility of CTLA4Ig with regulatory T cells by evaluating direct effects of CTLA4Ig on murine Treg generation and function in vitro. For generation of polyclonal-induced Tregs, we utilized an APC-free in vitro system and added titrated doses of CTLA4Ig at different time points. Phenotypical characterization by flow cytometry and functional characterization in suppressor assays did not reveal negative effects by CTLA4Ig. The costimulation blocker CTLA4Ig does not impair but rather improves murine iTreg generation and suppressor function in vitro.
Collapse
|
12
|
Pilat N, Sabler P, Klaus C, Mahr B, Unger L, Hock K, Wiletel M, Schwarz C, Kristo I, Regele H, Wekerle T. Blockade of adhesion molecule lymphocyte function-associated antigen-1 improves long-term heart allograft survival in mixed chimeras. J Heart Lung Transplant 2018; 37:1119-1130. [PMID: 29699851 DOI: 10.1016/j.healun.2018.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND The mixed chimerism approach for intentional induction of donor-specific tolerance was shown to be successful in various models from mice to humans. For transplant patients, the approach would obviate the need for long-term immunosuppression and associated side effects; moreover, it would preclude the risk of late graft loss due to chronic rejection. Widespread clinical application is hindered by toxicities related to recipient pre-conditioning. Herein we aimed to investigate a clinically relevant protocol for tolerance induction to cardiac allografts, sparing CD40 blockade or T-cell depletion. METHODS B6 mice were conditioned with non-myeloablative total body irradiation, fully mismatched BALB/c bone marrow cells, and short-term therapy, based on either anti- lymphocyte function-associated antigen-1 (anti-LFA-1) or anti-CD40L. Multilineage chimerism was followed by flow-cytometric analysis, tolerance was assessed with skin and heart allografts from fully or major histocompatibility complex-mismatched donors. Mechanisms of tolerance were investigated by analysis of donor-specific antibodies (DSAs), mixed lymphocyte reaction (MLR) assays, and deletion of donor-reactive T cells. RESULTS We found that the combination of cytotoxic T-lymphocyte antigen 4 immunoglobulin (CTLA4Ig) and rapamycin with LFA-1 blockade enhanced bone marrow engraftment and led to more efficient T-cell engraftment and subsequent tolerization. Although fully mismatched skin grafts were chronically rejected, primarily vascularized heart allografts survived indefinitely and without signs of chronic rejection, independent of minor antigen mismatches. CONCLUSIONS We have demonstarted a robust protocol for the induction of tolerance for cardiac allografts in the absence of CD40 blockade. Our findings demonstrate the potential of a clinically relevant minimal conditioning protocol designed to induce lifelong immunologic tolerance toward cardiac allografts.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria.
| | - Philipp Sabler
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Klaus
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Benedikt Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Karin Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Mario Wiletel
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Ivan Kristo
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Mahr B, Pilat N, Maschke S, Granofszky N, Schwarz C, Unger L, Hock K, Farkas AM, Klaus C, Regele H, Wekerle T. Regulatory T Cells Promote Natural Killer Cell Education in Mixed Chimeras. Am J Transplant 2017; 17:3049-3059. [PMID: 28489338 DOI: 10.1111/ajt.14342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
Therapeutic administration of regulatory T cells (Tregs) leads to engraftment of conventional doses of allogeneic bone marrow (BM) in nonirradiated recipient mice conditioned with costimulation blockade and mammalian target of rapamycin inhibition. The mode of action responsible for this Treg effect is poorly understood but may encompass the control of costimulation blockade-resistant natural killer (NK) cells. We show that transient NK cell depletion at the time of BM transplantation led to BM engraftment and persistent chimerism without Treg transfer but failed to induce skin graft tolerance. In contrast, the permanent absence of anti-donor NK reactivity in mice grafted with F1 BM was associated with both chimerism and tolerance comparable to Treg therapy, implying that NK cell tolerization is a critical mechanism of Treg therapy. Indeed, NK cells of Treg-treated BM recipients reshaped their receptor repertoire in the presence of donor MHC in a manner suggesting attenuated donor reactivity. These results indicate that adoptively transferred Tregs prevent BM rejection, at least in part, by suppressing NK cells and promote tolerance by regulating the appearance of NK cells expressing activating receptors to donor class I MHC.
Collapse
Affiliation(s)
- B Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - S Maschke
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Granofszky
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - L Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - A M Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - C Klaus
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - H Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Pilat N, Granofszky N, Wekerle T. Combining Adoptive Treg Transfer with Bone Marrow Transplantation for Transplantation Tolerance. CURRENT TRANSPLANTATION REPORTS 2017; 4:253-261. [PMID: 29201599 PMCID: PMC5691126 DOI: 10.1007/s40472-017-0164-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The mixed chimerism approach is an exceptionally potent strategy for the induction of donor-specific tolerance in organ transplantation and so far the only one that was demonstrated to work in the clinical setting. Regulatory T cells (Tregs) have been shown to improve chimerism induction in experimental animal models. This review summarizes the development of innovative BMT protocols using therapeutic Treg transfer for tolerance induction. RECENT FINDINGS Treg cell therapy promotes BM engraftment in reduced conditioning protocols in both, mice and non-human primates. In mice, transfer of polyclonal recipient Tregs was sufficient to substitute cytotoxic recipient conditioning. Treg therapy prevented chronic rejection of skin and heart allografts related to tissue-specific antigen disparities, in part by promoting intragraft Treg accumulation. SUMMARY Adoptive Treg transfer is remarkably effective in facilitating BM engraftment in reduced-intensity protocols in mice and non-human primates. Furthermore, it promotes regulatory mechanisms that prevent chronic rejection.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nicolas Granofszky
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
15
|
Mahr B, Wekerle T. Murine models of transplantation tolerance through mixed chimerism: advances and roadblocks. Clin Exp Immunol 2017; 189:181-189. [PMID: 28395110 PMCID: PMC5508343 DOI: 10.1111/cei.12976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation is the treatment of choice for patients with end-stage organ failure, but chronic immunosuppression is taking its toll in terms of morbidity and poor efficacy in preventing late graft loss. Therefore, a drug-free state would be desirable where the recipient permanently accepts a donor organ while remaining otherwise fully immunologically competent. Mouse studies unveiled mixed chimerism as an effective approach to induce such donor-specific tolerance deliberately and laid the foundation for a series of clinical pilot trials. Nevertheless, its widespread clinical implementation is currently prevented by cytotoxic conditioning and limited efficacy. Therefore, the use of mouse studies remains an indispensable tool for the development of novel concepts with potential for translation and for the delineation of underlying tolerance mechanisms. Recent innovations developed in mice include the use of pro-apoptotic drugs or regulatory T cell (Treg ) transfer for promoting bone marrow engraftment in the absence of myelosuppression and new insight gained in the role of innate immunity and the interplay between deletion and regulation in maintaining tolerance in chimeras. Here, we review these and other recent advances in murine studies inducing transplantation tolerance through mixed chimerism and discuss both the advances and roadblocks of this approach.
Collapse
Affiliation(s)
- B. Mahr
- Section of Transplantation Immunology, Department of SurgeryMedical University of ViennaViennaAustria
| | - T. Wekerle
- Section of Transplantation Immunology, Department of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
16
|
Granofszky N, Farkas AM, Muckenhuber M, Mahr B, Unger L, Maschke S, Pilat N, Holly R, Wiletel M, Regele H, Wekerle T. Anti-Interleukin-6 Promotes Allogeneic Bone Marrow Engraftment and Prolonged Graft Survival in an Irradiation-Free Murine Transplant Model. Front Immunol 2017; 8:821. [PMID: 28769930 PMCID: PMC5515831 DOI: 10.3389/fimmu.2017.00821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/29/2017] [Indexed: 01/06/2023] Open
Abstract
Transfer of recipient regulatory T cells (Tregs) induces mixed chimerism and tolerance in an irradiation-free bone marrow (BM) transplantation (BMT) model involving short-course co-stimulation blockade and mTOR inhibition. Boosting endogenous Tregs pharmacologically in vivo would be an attractive alternative avoiding the current limitations of performing adoptive cell therapy in the routine clinical setting. Interleukin-6 (IL-6) potently inhibits Treg differentiation and its blockade was shown to increase Treg numbers in vivo. Therefore, we investigated whether IL-6 blockade can replace adoptive Treg transfer in irradiation-free allogeneic BMT. Treatment with anti-IL-6 instead of Treg transfer led to multi-lineage chimerism (persisting for ~12 weeks) in recipients of fully mismatched BM and significantly prolonged donor skin (MST 58 days) and heart (MST > 100 days) graft survival. Endogenous Foxp3+ Tregs expanded in anti-IL-6-treated BMT recipients, while dendritic cell (DC) activation and memory CD8+ T cell development were inhibited. Adding anti-IL-17 to anti-IL-6 treatment increased Treg frequencies, but did not further prolong donor skin graft survival significantly. These results demonstrate that IL-6 blockade promotes BM engraftment and donor graft survival in non-irradiated recipients and might provide an alternative to Treg cell therapy in the clinical setting.
Collapse
Affiliation(s)
- Nicolas Granofszky
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas M Farkas
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Mahr
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Lukas Unger
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Svenja Maschke
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Raimund Holly
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Mario Wiletel
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| | - Heinz Regele
- Clin. Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Department of Surgery, Section of Transplant Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Reeves PLS, Rudraraju R, Wong FS, Hamilton-Williams EE, Steptoe RJ. Antigen presenting cell-targeted proinsulin expression converts insulin-specific CD8 + T-cell priming to tolerance in autoimmune-prone NOD mice. Eur J Immunol 2017; 47:1550-1561. [PMID: 28665492 DOI: 10.1002/eji.201747089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 11/07/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing pancreatic β cells. Therapies need to incorporate strategies to overcome the genetic defects that impair induction or maintenance of peripheral T-cell tolerance and contribute to disease development. We tested whether the enforced expression of an islet autoantigen in antigen-presenting cells (APC) counteracted peripheral T-cell tolerance defects in autoimmune-prone NOD mice. We observed that insulin-specific CD8+ T cells transferred to mice in which proinsulin was transgenically expressed in APCs underwent several rounds of division and the majority were deleted. Residual insulin-specific CD8+ T cells were rendered unresponsive and this was associated with TCR downregulation, loss of tetramer binding and expression of a range of co-inhibitory molecules. Notably, accumulation and effector differentiation of insulin-specific CD8+ T cells in pancreatic lymph nodes was prominent in non-transgenic recipients but blocked by transgenic proinsulin expression. This shift from T-cell priming to T-cell tolerance exemplifies the tolerogenic capacity of autoantigen expression by APC and the capacity to overcome genetic tolerance defects.
Collapse
Affiliation(s)
- Peta L S Reeves
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Rajeev Rudraraju
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|